L(s) = 1 | − 46·9-s + 120·11-s + 4.18e3·19-s − 7.10e3·29-s + 1.77e4·31-s − 2.48e4·41-s + 3.69e4·49-s − 7.33e4·59-s + 3.84e4·61-s − 5.47e3·71-s − 3.23e4·79-s + 4.70e4·81-s + 9.46e4·89-s − 5.52e3·99-s + 2.79e5·101-s + 1.93e5·109-s − 4.51e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.90e5·169-s + ⋯ |
L(s) = 1 | − 0.189·9-s + 0.299·11-s + 2.65·19-s − 1.56·29-s + 3.32·31-s − 2.31·41-s + 2.20·49-s − 2.74·59-s + 1.32·61-s − 0.128·71-s − 0.583·79-s + 0.797·81-s + 1.26·89-s − 0.0566·99-s + 2.72·101-s + 1.56·109-s − 2.80·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 1.59·169-s + ⋯ |
Λ(s)=(=((216⋅58)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((216⋅58)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅58
|
Sign: |
1
|
Analytic conductor: |
1.69387×107 |
Root analytic conductor: |
8.00958 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅58, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
0.9658575501 |
L(21) |
≈ |
0.9658575501 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | D4×C2 | 1+46T2−4997p2T4+46p10T6+p20T8 |
| 7 | D4×C2 | 1−36980T2+883272198T4−36980p10T6+p20T8 |
| 11 | D4 | (1−60T+230977T2−60p5T3+p10T4)2 |
| 13 | D4×C2 | 1−590804T2+163581027702T4−590804p10T6+p20T8 |
| 17 | D4×C2 | 1−1327586T2+3973871730147T4−1327586p10T6+p20T8 |
| 19 | D4 | (1−2092T+5218089T2−2092p5T3+p10T4)2 |
| 23 | D4×C2 | 1−10160180T2+108548175292998T4−10160180p10T6+p20T8 |
| 29 | D4 | (1+3552T+20618074T2+3552p5T3+p10T4)2 |
| 31 | D4 | (1−8888T+67804938T2−8888p5T3+p10T4)2 |
| 37 | D4×C2 | 1−33594380T2−2634705186058602T4−33594380p10T6+p20T8 |
| 41 | D4 | (1+12438T+217381963T2+12438p5T3+p10T4)2 |
| 43 | D4×C2 | 1−540244172T2+116157205788519894T4−540244172p10T6+p20T8 |
| 47 | D4×C2 | 1−902407196T2+308772689280765702T4−902407196p10T6+p20T8 |
| 53 | D4×C2 | 1−1189716620T2+656395125486896598T4−1189716620p10T6+p20T8 |
| 59 | D4 | (1+36696T+1234961302T2+36696p5T3+p10T4)2 |
| 61 | D4 | (1−19204T+627029406T2−19204p5T3+p10T4)2 |
| 67 | D4×C2 | 1−974988050T2+2516736182389071123T4−974988050p10T6+p20T8 |
| 71 | D4 | (1+2736T+2006886526T2+2736p5T3+p10T4)2 |
| 73 | D4×C2 | 1−8204978114T2+25425197509477462947T4−8204978114p10T6+p20T8 |
| 79 | D4 | (1+16184T+6157384362T2+16184p5T3+p10T4)2 |
| 83 | D4×C2 | 1−7195965410T2+40258768525685533923T4−7195965410p10T6+p20T8 |
| 89 | D4 | (1−47322T−1006825781T2−47322p5T3+p10T4)2 |
| 97 | D4×C2 | 1−28221621500T2+34⋯98T4−28221621500p10T6+p20T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.40398713280085432629081152280, −7.05730360635068593050478553473, −6.79433910624980744498318527138, −6.77778309001600587298953628413, −6.11380078456916611540432374790, −6.09163690323236799518726144253, −5.76935252129977773956774117662, −5.57176660603347047522385082644, −5.40308105845601135433634332596, −4.80883715713246131522954960375, −4.67583728887146231511670662941, −4.61091947168498199107241131299, −4.33896773780196025697692108380, −3.59842327603511593353697072462, −3.45486830732101766997968249577, −3.34280064963195514457218340424, −3.18188677791884735790007258408, −2.59144080785299611370255899838, −2.36029141612556492280851388664, −1.96363013665438110520346777903, −1.69839223623848856564687725124, −1.02096484997895471496647747888, −0.974126018263220829122564955966, −0.826187811440256196307099789058, −0.10543515571588512049773446391,
0.10543515571588512049773446391, 0.826187811440256196307099789058, 0.974126018263220829122564955966, 1.02096484997895471496647747888, 1.69839223623848856564687725124, 1.96363013665438110520346777903, 2.36029141612556492280851388664, 2.59144080785299611370255899838, 3.18188677791884735790007258408, 3.34280064963195514457218340424, 3.45486830732101766997968249577, 3.59842327603511593353697072462, 4.33896773780196025697692108380, 4.61091947168498199107241131299, 4.67583728887146231511670662941, 4.80883715713246131522954960375, 5.40308105845601135433634332596, 5.57176660603347047522385082644, 5.76935252129977773956774117662, 6.09163690323236799518726144253, 6.11380078456916611540432374790, 6.77778309001600587298953628413, 6.79433910624980744498318527138, 7.05730360635068593050478553473, 7.40398713280085432629081152280