L(s) = 1 | − 660·13-s − 5.06e3·17-s − 5.54e3·37-s + 8.71e3·41-s + 9.56e4·53-s − 1.43e5·61-s + 8.64e4·73-s + 8.71e4·81-s + 2.46e3·97-s + 5.87e5·101-s − 4.68e4·113-s + 6.13e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.17e5·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 1.08·13-s − 4.24·17-s − 0.665·37-s + 0.809·41-s + 4.67·53-s − 4.93·61-s + 1.89·73-s + 1.47·81-s + 0.0265·97-s + 5.73·101-s − 0.344·113-s + 3.80·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 0.586·169-s + 2.54e−6·173-s + 2.33e−6·179-s + 2.26e−6·181-s + 1.98e−6·191-s + 1.93e−6·193-s + ⋯ |
Λ(s)=(=((216⋅58)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((216⋅58)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅58
|
Sign: |
1
|
Analytic conductor: |
1.69387×107 |
Root analytic conductor: |
8.00958 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅58, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
3.479602374 |
L(21) |
≈ |
3.479602374 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C23 | 1−87122T4+p20T8 |
| 7 | C23 | 1−549771682T4+p20T8 |
| 11 | C22 | (1−306602T2+p10T4)2 |
| 13 | C22 | (1+330T+54450T2+330p5T3+p10T4)2 |
| 17 | C22 | (1+2530T+3200450T2+2530p5T3+p10T4)2 |
| 19 | C22 | (1−2549802T2+p10T4)2 |
| 23 | C23 | 1+68424579426718T4+p20T8 |
| 29 | C22 | (1−34283082T2+p10T4)2 |
| 31 | C22 | (1−222542pT2+p10T4)2 |
| 37 | C22 | (1+2770T+3836450T2+2770p5T3+p10T4)2 |
| 41 | C2 | (1−2178T+p5T2)4 |
| 43 | C23 | 1−35368995141923122T4+p20T8 |
| 47 | C23 | 1+62763367693678078T4+p20T8 |
| 53 | C22 | (1−47830T+1143854450T2−47830p5T3+p10T4)2 |
| 59 | C22 | (1+693226598T2+p10T4)2 |
| 61 | C2 | (1+35882T+p5T2)4 |
| 67 | C23 | 1−2056557036860651602T4+p20T8 |
| 71 | C22 | (1+894616798T2+p10T4)2 |
| 73 | C22 | (1−43230T+934416450T2−43230p5T3+p10T4)2 |
| 79 | C22 | (1+5673984798T2+p10T4)2 |
| 83 | C23 | 1−7276763020942840082T4+p20T8 |
| 89 | C22 | (1+1924732878T2+p10T4)2 |
| 97 | C22 | (1−1230T+756450T2−1230p5T3+p10T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.23316512281745283489232443903, −6.98405665870692257804712361159, −6.91361833754589925361790239110, −6.54883129014935147662487027109, −6.49204734186441541860349634935, −5.89825983575944649431321144987, −5.86277668950416943455681574677, −5.73481602893949889458225910964, −5.15064703135633514759530460085, −4.80287331770110658221778125052, −4.70309250929625057908708920339, −4.41015798840778967627552723889, −4.35340241105729351608377147347, −4.04465533982118009816183851745, −3.48510024829449422319992825095, −3.19149509949423687517392965240, −3.10075915194474378097827084069, −2.32527892251211426172158101898, −2.17291549402563526941784270285, −2.17287152481114052290610149932, −1.98989794737957290897775853581, −1.31295783682318706234672943366, −0.70130318991100519062555050103, −0.41728810129350140301967538304, −0.39658871895481923981925215144,
0.39658871895481923981925215144, 0.41728810129350140301967538304, 0.70130318991100519062555050103, 1.31295783682318706234672943366, 1.98989794737957290897775853581, 2.17287152481114052290610149932, 2.17291549402563526941784270285, 2.32527892251211426172158101898, 3.10075915194474378097827084069, 3.19149509949423687517392965240, 3.48510024829449422319992825095, 4.04465533982118009816183851745, 4.35340241105729351608377147347, 4.41015798840778967627552723889, 4.70309250929625057908708920339, 4.80287331770110658221778125052, 5.15064703135633514759530460085, 5.73481602893949889458225910964, 5.86277668950416943455681574677, 5.89825983575944649431321144987, 6.49204734186441541860349634935, 6.54883129014935147662487027109, 6.91361833754589925361790239110, 6.98405665870692257804712361159, 7.23316512281745283489232443903