Properties

Label 8-20e8-1.1-c5e4-0-5
Degree $8$
Conductor $25600000000$
Sign $1$
Analytic cond. $1.69387\times 10^{7}$
Root an. cond. $8.00958$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 660·13-s − 5.06e3·17-s − 5.54e3·37-s + 8.71e3·41-s + 9.56e4·53-s − 1.43e5·61-s + 8.64e4·73-s + 8.71e4·81-s + 2.46e3·97-s + 5.87e5·101-s − 4.68e4·113-s + 6.13e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.17e5·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 1.08·13-s − 4.24·17-s − 0.665·37-s + 0.809·41-s + 4.67·53-s − 4.93·61-s + 1.89·73-s + 1.47·81-s + 0.0265·97-s + 5.73·101-s − 0.344·113-s + 3.80·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 0.586·169-s + 2.54e−6·173-s + 2.33e−6·179-s + 2.26e−6·181-s + 1.98e−6·191-s + 1.93e−6·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.69387\times 10^{7}\)
Root analytic conductor: \(8.00958\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(3.479602374\)
\(L(\frac12)\) \(\approx\) \(3.479602374\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^3$ \( 1 - 87122 T^{4} + p^{20} T^{8} \)
7$C_2^3$ \( 1 - 549771682 T^{4} + p^{20} T^{8} \)
11$C_2^2$ \( ( 1 - 306602 T^{2} + p^{10} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 330 T + 54450 T^{2} + 330 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 2530 T + 3200450 T^{2} + 2530 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 2549802 T^{2} + p^{10} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 68424579426718 T^{4} + p^{20} T^{8} \)
29$C_2^2$ \( ( 1 - 34283082 T^{2} + p^{10} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 222542 p T^{2} + p^{10} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 2770 T + 3836450 T^{2} + 2770 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 2178 T + p^{5} T^{2} )^{4} \)
43$C_2^3$ \( 1 - 35368995141923122 T^{4} + p^{20} T^{8} \)
47$C_2^3$ \( 1 + 62763367693678078 T^{4} + p^{20} T^{8} \)
53$C_2^2$ \( ( 1 - 47830 T + 1143854450 T^{2} - 47830 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 693226598 T^{2} + p^{10} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 35882 T + p^{5} T^{2} )^{4} \)
67$C_2^3$ \( 1 - 2056557036860651602 T^{4} + p^{20} T^{8} \)
71$C_2^2$ \( ( 1 + 894616798 T^{2} + p^{10} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 43230 T + 934416450 T^{2} - 43230 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 5673984798 T^{2} + p^{10} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 7276763020942840082 T^{4} + p^{20} T^{8} \)
89$C_2^2$ \( ( 1 + 1924732878 T^{2} + p^{10} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 1230 T + 756450 T^{2} - 1230 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23316512281745283489232443903, −6.98405665870692257804712361159, −6.91361833754589925361790239110, −6.54883129014935147662487027109, −6.49204734186441541860349634935, −5.89825983575944649431321144987, −5.86277668950416943455681574677, −5.73481602893949889458225910964, −5.15064703135633514759530460085, −4.80287331770110658221778125052, −4.70309250929625057908708920339, −4.41015798840778967627552723889, −4.35340241105729351608377147347, −4.04465533982118009816183851745, −3.48510024829449422319992825095, −3.19149509949423687517392965240, −3.10075915194474378097827084069, −2.32527892251211426172158101898, −2.17291549402563526941784270285, −2.17287152481114052290610149932, −1.98989794737957290897775853581, −1.31295783682318706234672943366, −0.70130318991100519062555050103, −0.41728810129350140301967538304, −0.39658871895481923981925215144, 0.39658871895481923981925215144, 0.41728810129350140301967538304, 0.70130318991100519062555050103, 1.31295783682318706234672943366, 1.98989794737957290897775853581, 2.17287152481114052290610149932, 2.17291549402563526941784270285, 2.32527892251211426172158101898, 3.10075915194474378097827084069, 3.19149509949423687517392965240, 3.48510024829449422319992825095, 4.04465533982118009816183851745, 4.35340241105729351608377147347, 4.41015798840778967627552723889, 4.70309250929625057908708920339, 4.80287331770110658221778125052, 5.15064703135633514759530460085, 5.73481602893949889458225910964, 5.86277668950416943455681574677, 5.89825983575944649431321144987, 6.49204734186441541860349634935, 6.54883129014935147662487027109, 6.91361833754589925361790239110, 6.98405665870692257804712361159, 7.23316512281745283489232443903

Graph of the $Z$-function along the critical line