L(s) = 1 | + 3·9-s + 8·11-s − 24·19-s − 8·29-s − 4·31-s + 19·49-s − 10·59-s − 12·61-s + 24·71-s − 36·79-s − 7·81-s − 24·89-s + 24·99-s − 46·101-s − 12·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 39·169-s − 72·171-s + ⋯ |
L(s) = 1 | + 9-s + 2.41·11-s − 5.50·19-s − 1.48·29-s − 0.718·31-s + 19/7·49-s − 1.30·59-s − 1.53·61-s + 2.84·71-s − 4.05·79-s − 7/9·81-s − 2.54·89-s + 2.41·99-s − 4.57·101-s − 1.14·109-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3·169-s − 5.50·171-s + ⋯ |
Λ(s)=(=((28⋅58⋅234)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅58⋅234)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅58⋅234
|
Sign: |
1
|
Analytic conductor: |
113767. |
Root analytic conductor: |
4.28550 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅58⋅234, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.254450333 |
L(21) |
≈ |
2.254450333 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 23 | C2 | (1+T2)2 |
good | 3 | D4×C2 | 1−pT2+16T4−p3T6+p4T8 |
| 7 | D4×C2 | 1−19T2+184T4−19p2T6+p4T8 |
| 11 | C2 | (1−2T+pT2)4 |
| 13 | D4×C2 | 1−3pT2+680T4−3p3T6+p4T8 |
| 17 | D4×C2 | 1−59T2+1444T4−59p2T6+p4T8 |
| 19 | C2 | (1+6T+pT2)4 |
| 29 | D4 | (1+4T+45T2+4pT3+p2T4)2 |
| 31 | D4 | (1+2T−5T2+2pT3+p2T4)2 |
| 37 | D4×C2 | 1−127T2+6664T4−127p2T6+p4T8 |
| 41 | C22 | (1+65T2+p2T4)2 |
| 43 | C2 | (1−pT2)4 |
| 47 | D4×C2 | 1−107T2+6936T4−107p2T6+p4T8 |
| 53 | D4×C2 | 1−191T2+14632T4−191p2T6+p4T8 |
| 59 | D4 | (1+5T+86T2+5pT3+p2T4)2 |
| 61 | D4 | (1+6T+114T2+6pT3+p2T4)2 |
| 67 | D4×C2 | 1−175T2+15916T4−175p2T6+p4T8 |
| 71 | D4 | (1−12T+161T2−12pT3+p2T4)2 |
| 73 | D4×C2 | 1−199T2+19840T4−199p2T6+p4T8 |
| 79 | D4 | (1+18T+222T2+18pT3+p2T4)2 |
| 83 | D4×C2 | 1+85T2+15376T4+85p2T6+p4T8 |
| 89 | D4 | (1+12T+146T2+12pT3+p2T4)2 |
| 97 | D4×C2 | 1−192T2+22526T4−192p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.47720705641153756255839716199, −6.20157648963508884697311454059, −6.12349114470830002877418782494, −5.69174898879537983679204803186, −5.66242896332010733462295868651, −5.43466003893453319520443709987, −5.34506170508296469213931086513, −4.54208524705766411609994900361, −4.50418075742600502692610010654, −4.49639262794295976712704068816, −4.26527282186323017147359551419, −4.00428535033584133867341723346, −3.94674267463688639654017916825, −3.83383714250876091929595743266, −3.54952314532672067303804848579, −3.02932428616861243646637013049, −2.65485863579735171951860026419, −2.62845434297040578089079416770, −2.32894006910848013716554516161, −1.81272631460850310706014414490, −1.64604722216838827234324406590, −1.51112087306479009439007422655, −1.49522588001476367536538684544, −0.52818152986298899885087905296, −0.32703884585831648308667288333,
0.32703884585831648308667288333, 0.52818152986298899885087905296, 1.49522588001476367536538684544, 1.51112087306479009439007422655, 1.64604722216838827234324406590, 1.81272631460850310706014414490, 2.32894006910848013716554516161, 2.62845434297040578089079416770, 2.65485863579735171951860026419, 3.02932428616861243646637013049, 3.54952314532672067303804848579, 3.83383714250876091929595743266, 3.94674267463688639654017916825, 4.00428535033584133867341723346, 4.26527282186323017147359551419, 4.49639262794295976712704068816, 4.50418075742600502692610010654, 4.54208524705766411609994900361, 5.34506170508296469213931086513, 5.43466003893453319520443709987, 5.66242896332010733462295868651, 5.69174898879537983679204803186, 6.12349114470830002877418782494, 6.20157648963508884697311454059, 6.47720705641153756255839716199