L(s) = 1 | + 9-s + 2·25-s − 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2·225-s + ⋯ |
L(s) = 1 | + 9-s + 2·25-s − 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2·225-s + ⋯ |
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38
|
Sign: |
1
|
Analytic conductor: |
0.00682839 |
Root analytic conductor: |
0.536154 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅38, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.6732433869 |
L(21) |
≈ |
0.6732433869 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−T2+T4 |
good | 5 | C22 | (1−T2+T4)2 |
| 7 | C22 | (1−T2+T4)2 |
| 11 | C2×C22 | (1+T2)2(1−T2+T4) |
| 13 | C2 | (1−T+T2)2(1+T+T2)2 |
| 17 | C2 | (1−T+T2)2(1+T+T2)2 |
| 19 | C22 | (1−T2+T4)2 |
| 23 | C2 | (1−T+T2)2(1+T+T2)2 |
| 29 | C22 | (1−T2+T4)2 |
| 31 | C22 | (1−T2+T4)2 |
| 37 | C1×C1 | (1−T)4(1+T)4 |
| 41 | C1×C2 | (1+T)4(1+T+T2)2 |
| 43 | C2×C22 | (1+T2)2(1−T2+T4) |
| 47 | C2 | (1−T+T2)2(1+T+T2)2 |
| 53 | C2 | (1+T2)4 |
| 59 | C2×C22 | (1+T2)2(1−T2+T4) |
| 61 | C2 | (1−T+T2)2(1+T+T2)2 |
| 67 | C2×C22 | (1+T2)2(1−T2+T4) |
| 71 | C1×C1 | (1−T)4(1+T)4 |
| 73 | C2 | (1+T+T2)4 |
| 79 | C22 | (1−T2+T4)2 |
| 83 | C22 | (1−T2+T4)2 |
| 89 | C1×C1 | (1−T)4(1+T)4 |
| 97 | C1×C2 | (1+T)4(1−T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.082684795086260868929177818776, −7.49225222265461180192907109696, −7.47440832375795933917676830325, −7.18165579167383673745690429316, −7.06455592311538659600152287601, −6.83401686200139843374107042774, −6.61004794729969118970921584743, −6.33286240630181358207240000623, −6.22700937088384161602121393312, −5.50040927306322818781316997100, −5.48491417883794814218081601630, −5.46310201546624131464893493877, −4.98754688349010874943566305594, −4.66303731426903007899028002723, −4.52399339859595714453183933364, −4.30307733460604796364957181372, −3.84968304718626400168524045296, −3.68277954911902791232040918981, −3.09682451146858744606590839211, −3.07759556465071361272217360998, −2.88552034487942242599068169871, −2.21398352661825444463316834287, −1.72760905627092993267903785277, −1.62958493013945976422657223905, −1.09416233549237762612237209965,
1.09416233549237762612237209965, 1.62958493013945976422657223905, 1.72760905627092993267903785277, 2.21398352661825444463316834287, 2.88552034487942242599068169871, 3.07759556465071361272217360998, 3.09682451146858744606590839211, 3.68277954911902791232040918981, 3.84968304718626400168524045296, 4.30307733460604796364957181372, 4.52399339859595714453183933364, 4.66303731426903007899028002723, 4.98754688349010874943566305594, 5.46310201546624131464893493877, 5.48491417883794814218081601630, 5.50040927306322818781316997100, 6.22700937088384161602121393312, 6.33286240630181358207240000623, 6.61004794729969118970921584743, 6.83401686200139843374107042774, 7.06455592311538659600152287601, 7.18165579167383673745690429316, 7.47440832375795933917676830325, 7.49225222265461180192907109696, 8.082684795086260868929177818776