Properties

Label 8-24e8-1.1-c0e4-0-1
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $0.00682839$
Root an. cond. $0.536154$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 2·25-s − 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2·225-s + ⋯
L(s)  = 1  + 9-s + 2·25-s − 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(0.00682839\)
Root analytic conductor: \(0.536154\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6732433869\)
\(L(\frac12)\) \(\approx\) \(0.6732433869\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
good5$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T + T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.082684795086260868929177818776, −7.49225222265461180192907109696, −7.47440832375795933917676830325, −7.18165579167383673745690429316, −7.06455592311538659600152287601, −6.83401686200139843374107042774, −6.61004794729969118970921584743, −6.33286240630181358207240000623, −6.22700937088384161602121393312, −5.50040927306322818781316997100, −5.48491417883794814218081601630, −5.46310201546624131464893493877, −4.98754688349010874943566305594, −4.66303731426903007899028002723, −4.52399339859595714453183933364, −4.30307733460604796364957181372, −3.84968304718626400168524045296, −3.68277954911902791232040918981, −3.09682451146858744606590839211, −3.07759556465071361272217360998, −2.88552034487942242599068169871, −2.21398352661825444463316834287, −1.72760905627092993267903785277, −1.62958493013945976422657223905, −1.09416233549237762612237209965, 1.09416233549237762612237209965, 1.62958493013945976422657223905, 1.72760905627092993267903785277, 2.21398352661825444463316834287, 2.88552034487942242599068169871, 3.07759556465071361272217360998, 3.09682451146858744606590839211, 3.68277954911902791232040918981, 3.84968304718626400168524045296, 4.30307733460604796364957181372, 4.52399339859595714453183933364, 4.66303731426903007899028002723, 4.98754688349010874943566305594, 5.46310201546624131464893493877, 5.48491417883794814218081601630, 5.50040927306322818781316997100, 6.22700937088384161602121393312, 6.33286240630181358207240000623, 6.61004794729969118970921584743, 6.83401686200139843374107042774, 7.06455592311538659600152287601, 7.18165579167383673745690429316, 7.47440832375795933917676830325, 7.49225222265461180192907109696, 8.082684795086260868929177818776

Graph of the $Z$-function along the critical line