L(s) = 1 | + 6·3-s − 8·5-s + 6·7-s + 21·9-s + 10·11-s − 10·13-s − 48·15-s − 16·17-s + 6·19-s + 36·21-s − 6·23-s + 44·25-s + 54·27-s − 6·29-s + 8·31-s + 60·33-s − 48·35-s + 12·37-s − 60·39-s + 16·43-s − 168·45-s + 2·47-s + 8·49-s − 96·51-s − 16·53-s − 80·55-s + 36·57-s + ⋯ |
L(s) = 1 | + 3.46·3-s − 3.57·5-s + 2.26·7-s + 7·9-s + 3.01·11-s − 2.77·13-s − 12.3·15-s − 3.88·17-s + 1.37·19-s + 7.85·21-s − 1.25·23-s + 44/5·25-s + 10.3·27-s − 1.11·29-s + 1.43·31-s + 10.4·33-s − 8.11·35-s + 1.97·37-s − 9.60·39-s + 2.43·43-s − 25.0·45-s + 0.291·47-s + 8/7·49-s − 13.4·51-s − 2.19·53-s − 10.7·55-s + 4.76·57-s + ⋯ |
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅38)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38
|
Sign: |
1
|
Analytic conductor: |
447.505 |
Root analytic conductor: |
2.14461 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅38, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.733023320 |
L(21) |
≈ |
6.733023320 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1−pT+pT2)2 |
good | 5 | D4×C2 | 1+8T+4pT2−4T3−89T4−4pT5+4p3T6+8p3T7+p4T8 |
| 7 | D4×C2 | 1−6T+4pT2−96T3+291T4−96pT5+4p3T6−6p3T7+p4T8 |
| 11 | D4×C2 | 1−10T+41T2−82T3+136T4−82pT5+41p2T6−10p3T7+p4T8 |
| 13 | C2×C22 | (1+5T+pT2)2(1+23T2+p2T4) |
| 17 | C22 | (1+8T+47T2+8pT3+p2T4)2 |
| 19 | D4×C2 | 1−6T+18T2−132T3+959T4−132pT5+18p2T6−6p3T7+p4T8 |
| 23 | D4×C2 | 1+6T+52T2+240T3+1347T4+240pT5+52p2T6+6p3T7+p4T8 |
| 29 | C23 | 1+6T+18T2+36T3−457T4+36pT5+18p2T6+6p3T7+p4T8 |
| 31 | D4×C2 | 1−8T−2T2−32T3+1411T4−32pT5−2p2T6−8p3T7+p4T8 |
| 37 | D4×C2 | 1−12T+72T2−588T3+4658T4−588pT5+72p2T6−12p3T7+p4T8 |
| 41 | C23 | 1+73T2+3648T4+73p2T6+p4T8 |
| 43 | D4×C2 | 1−16T+65T2+624T3−8092T4+624pT5+65p2T6−16p3T7+p4T8 |
| 47 | D4×C2 | 1−2T−16T2+148T3−1997T4+148pT5−16p2T6−2p3T7+p4T8 |
| 53 | D4×C2 | 1+16T+128T2+976T3+7378T4+976pT5+128p2T6+16p3T7+p4T8 |
| 59 | D4×C2 | 1+6T+45T2−594T3−3376T4−594pT5+45p2T6+6p3T7+p4T8 |
| 61 | D4×C2 | 1+12T+180T2+1596T3+15143T4+1596pT5+180p2T6+12p3T7+p4T8 |
| 67 | D4×C2 | 1+16T+113T2+384T3−172T4+384pT5+113p2T6+16p3T7+p4T8 |
| 71 | D4×C2 | 1−156T2+13094T4−156p2T6+p4T8 |
| 73 | D4×C2 | 1−158T2+16131T4−158p2T6+p4T8 |
| 79 | C22 | (1−12T+65T2−12pT3+p2T4)2 |
| 83 | C23 | 1−2T+2T2+328T3−7217T4+328pT5+2p2T6−2p3T7+p4T8 |
| 89 | C22 | (1−174T2+p2T4)2 |
| 97 | D4×C2 | 1+20T+109T2+20pT3+376pT4+20p2T5+109p2T6+20p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.87717361387222809149298613794, −7.47500259637307731378188261310, −7.45522003395365809876340972527, −7.26120610036209112453457874834, −7.20392190230465880518958012204, −6.91859964322026948445517198573, −6.44067288560019112536254488185, −6.26041863570242261577086910155, −6.10517468183462305665122457970, −5.04513515440582730632390454204, −4.80262701270519440538109749946, −4.58169251470589773119412884980, −4.52894018041374925835526999335, −4.41212321747056481783418730999, −4.22426791487876113833159390421, −4.07698259689205053550646436199, −3.49327055423267326069165901655, −3.46159142506378581515616693618, −3.01140495584972192352855143522, −2.79285429412326055230635552274, −2.40603293811004784736397263174, −1.93184635932870062166391627912, −1.91493704273533030447488103580, −1.26848366388194224536007203471, −0.64718781797248432170085297969,
0.64718781797248432170085297969, 1.26848366388194224536007203471, 1.91493704273533030447488103580, 1.93184635932870062166391627912, 2.40603293811004784736397263174, 2.79285429412326055230635552274, 3.01140495584972192352855143522, 3.46159142506378581515616693618, 3.49327055423267326069165901655, 4.07698259689205053550646436199, 4.22426791487876113833159390421, 4.41212321747056481783418730999, 4.52894018041374925835526999335, 4.58169251470589773119412884980, 4.80262701270519440538109749946, 5.04513515440582730632390454204, 6.10517468183462305665122457970, 6.26041863570242261577086910155, 6.44067288560019112536254488185, 6.91859964322026948445517198573, 7.20392190230465880518958012204, 7.26120610036209112453457874834, 7.45522003395365809876340972527, 7.47500259637307731378188261310, 7.87717361387222809149298613794