L(s) = 1 | + 12·3-s − 6·5-s − 6·7-s + 90·9-s + 18·11-s + 14·13-s − 72·15-s − 8·19-s − 72·21-s + 30·23-s + 3·25-s + 540·27-s − 6·29-s + 74·31-s + 216·33-s + 36·35-s + 120·37-s + 168·39-s − 138·41-s − 10·43-s − 540·45-s + 174·47-s + 11·49-s − 108·55-s − 96·57-s + 18·59-s + 62·61-s + ⋯ |
L(s) = 1 | + 4·3-s − 6/5·5-s − 6/7·7-s + 10·9-s + 1.63·11-s + 1.07·13-s − 4.79·15-s − 0.421·19-s − 3.42·21-s + 1.30·23-s + 3/25·25-s + 20·27-s − 0.206·29-s + 2.38·31-s + 6.54·33-s + 1.02·35-s + 3.24·37-s + 4.30·39-s − 3.36·41-s − 0.232·43-s − 12·45-s + 3.70·47-s + 0.224·49-s − 1.96·55-s − 1.68·57-s + 0.305·59-s + 1.01·61-s + ⋯ |
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((224⋅38)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38
|
Sign: |
1
|
Analytic conductor: |
60677.8 |
Root analytic conductor: |
3.96167 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅38, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
34.27520538 |
L(21) |
≈ |
34.27520538 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)4 |
good | 5 | D4×C2 | 1+6T+33T2+126T3+116T4+126p2T5+33p4T6+6p6T7+p8T8 |
| 7 | D4×C2 | 1+6T+25T2−522T3−4044T4−522p2T5+25p4T6+6p6T7+p8T8 |
| 11 | D4×C2 | 1−18T+249T2−2538T3+18308T4−2538p2T5+249p4T6−18p6T7+p8T8 |
| 13 | D4×C2 | 1−14T−95T2+658T3+22996T4+658p2T5−95p4T6−14p6T7+p8T8 |
| 17 | D4×C2 | 1−516T2+135302T4−516p4T6+p8T8 |
| 19 | D4 | (1+4T+18pT2+4p2T3+p4T4)2 |
| 23 | D4×C2 | 1−30T+1401T2−33030T3+1091060T4−33030p2T5+1401p4T6−30p6T7+p8T8 |
| 29 | D4×C2 | 1+6T+1409T2+8382T3+1254420T4+8382p2T5+1409p4T6+6p6T7+p8T8 |
| 31 | D4×C2 | 1−74T+2281T2−94202T3+4022068T4−94202p2T5+2281p4T6−74p6T7+p8T8 |
| 37 | D4 | (1−60T+3254T2−60p2T3+p4T4)2 |
| 41 | C22 | (1+69T+3268T2+69p2T3+p4T4)2 |
| 43 | D4×C2 | 1+10T−2087T2−15110T3+1179268T4−15110p2T5−2087p4T6+10p6T7+p8T8 |
| 47 | D4×C2 | 1−174T+16745T2−1157622T3+61675956T4−1157622p2T5+16745p4T6−174p6T7+p8T8 |
| 53 | D4×C2 | 1−996T2−9136858T4−996p4T6+p8T8 |
| 59 | D4×C2 | 1−18T+6969T2−123498T3+35331908T4−123498p2T5+6969p4T6−18p6T7+p8T8 |
| 61 | D4×C2 | 1−62T−4463T2−53630T3+40856884T4−53630p2T5−4463p4T6−62p6T7+p8T8 |
| 67 | D4×C2 | 1−22T+985T2+208538T3−22072796T4+208538p2T5+985p4T6−22p6T7+p8T8 |
| 71 | D4×C2 | 1−16452T2+117605702T4−16452p4T6+p8T8 |
| 73 | D4 | (1−20T+7302T2−20p2T3+p4T4)2 |
| 79 | D4×C2 | 1+86T−2231T2−245530T3+7570612T4−245530p2T5−2231p4T6+86p6T7+p8T8 |
| 83 | D4×C2 | 1−66T+9321T2−519354T3+24465668T4−519354p2T5+9321p4T6−66p6T7+p8T8 |
| 89 | D4×C2 | 1−25924T2+285535302T4−25924p4T6+p8T8 |
| 97 | D4×C2 | 1−242T+25489T2−3450194T3+454397668T4−3450194p2T5+25489p4T6−242p6T7+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.67448195319248945577004048149, −7.34482980624141117809351449002, −7.29456403412697544876071671020, −6.88813167569989772737104925355, −6.70494959450269473508175319731, −6.45222081320861973693901882149, −6.26884864496769884922748216417, −6.23273940440639986766501663639, −5.49989184037788732915779209031, −5.05398933174623130114866825982, −4.69977025696506042830821918527, −4.56866169049821793774190876385, −4.26454530284287362355828277931, −3.85027344442195721233138870437, −3.79448366997570974918677648936, −3.70131455162801110440201748004, −3.55177177308958986228403185427, −3.02964242668641056997276204255, −2.60027015351911080305266003717, −2.56718656808557055455405157069, −2.49581172823459236844651768699, −1.71051482389479678916026393753, −1.37819337430813906522954436498, −0.980422110614424418984232618323, −0.837743817370796911723038823222,
0.837743817370796911723038823222, 0.980422110614424418984232618323, 1.37819337430813906522954436498, 1.71051482389479678916026393753, 2.49581172823459236844651768699, 2.56718656808557055455405157069, 2.60027015351911080305266003717, 3.02964242668641056997276204255, 3.55177177308958986228403185427, 3.70131455162801110440201748004, 3.79448366997570974918677648936, 3.85027344442195721233138870437, 4.26454530284287362355828277931, 4.56866169049821793774190876385, 4.69977025696506042830821918527, 5.05398933174623130114866825982, 5.49989184037788732915779209031, 6.23273940440639986766501663639, 6.26884864496769884922748216417, 6.45222081320861973693901882149, 6.70494959450269473508175319731, 6.88813167569989772737104925355, 7.29456403412697544876071671020, 7.34482980624141117809351449002, 7.67448195319248945577004048149