Properties

Label 8-294e4-1.1-c5e4-0-1
Degree $8$
Conductor $7471182096$
Sign $1$
Analytic cond. $4.94346\times 10^{6}$
Root an. cond. $6.86679$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 18·3-s + 16·4-s − 53·5-s + 144·6-s + 128·8-s + 81·9-s + 424·10-s − 191·11-s − 288·12-s + 758·13-s + 954·15-s − 1.02e3·16-s − 340·17-s − 648·18-s − 1.76e3·19-s − 848·20-s + 1.52e3·22-s − 3.23e3·23-s − 2.30e3·24-s + 4.55e3·25-s − 6.06e3·26-s + 1.45e3·27-s + 8.91e3·29-s − 7.63e3·30-s + 1.99e3·31-s + 2.04e3·32-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 1/2·4-s − 0.948·5-s + 1.63·6-s + 0.707·8-s + 1/3·9-s + 1.34·10-s − 0.475·11-s − 0.577·12-s + 1.24·13-s + 1.09·15-s − 16-s − 0.285·17-s − 0.471·18-s − 1.12·19-s − 0.474·20-s + 0.673·22-s − 1.27·23-s − 0.816·24-s + 1.45·25-s − 1.75·26-s + 0.384·27-s + 1.96·29-s − 1.54·30-s + 0.372·31-s + 0.353·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(4.94346\times 10^{6}\)
Root analytic conductor: \(6.86679\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.08090134332\)
\(L(\frac12)\) \(\approx\) \(0.08090134332\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
3$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
7 \( 1 \)
good5$D_4\times C_2$ \( 1 + 53 T - 1743 T^{2} - 89994 T^{3} + 2176954 T^{4} - 89994 p^{5} T^{5} - 1743 p^{10} T^{6} + 53 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 + 191 T - 234735 T^{2} - 883566 p T^{3} + 345003244 p^{2} T^{4} - 883566 p^{6} T^{5} - 234735 p^{10} T^{6} + 191 p^{15} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 - 379 T + 488066 T^{2} - 379 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 20 p T - 1792914 T^{2} - 18624000 p T^{3} + 1462296318547 T^{4} - 18624000 p^{6} T^{5} - 1792914 p^{10} T^{6} + 20 p^{16} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 + 1769 T + 1045603 T^{2} - 5074270360 T^{3} - 9537626497976 T^{4} - 5074270360 p^{5} T^{5} + 1045603 p^{10} T^{6} + 1769 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 + 3236 T - 4980510 T^{2} + 8347326720 T^{3} + 129944731805059 T^{4} + 8347326720 p^{5} T^{5} - 4980510 p^{10} T^{6} + 3236 p^{15} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 - 4459 T + 37061638 T^{2} - 4459 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 1994 T + 10280849 T^{2} + 126744851310 T^{3} - 893708155041268 T^{4} + 126744851310 p^{5} T^{5} + 10280849 p^{10} T^{6} - 1994 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 + 20587 T + 185423563 T^{2} + 2052793425004 T^{3} + 22636782601114654 T^{4} + 2052793425004 p^{5} T^{5} + 185423563 p^{10} T^{6} + 20587 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 + 8814 T + 240678562 T^{2} + 8814 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 15853 T + 338678796 T^{2} - 15853 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 33912 T + 462240278 T^{2} - 7769017144224 T^{3} + 156694760249296899 T^{4} - 7769017144224 p^{5} T^{5} + 462240278 p^{10} T^{6} - 33912 p^{15} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 + 49239 T + 1103481011 T^{2} + 23861570178636 T^{3} + 556242294983257398 T^{4} + 23861570178636 p^{5} T^{5} + 1103481011 p^{10} T^{6} + 49239 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 + 56735 T + 988331391 T^{2} + 45426593189460 T^{3} + 2162900736067650880 T^{4} + 45426593189460 p^{5} T^{5} + 988331391 p^{10} T^{6} + 56735 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 67508 T + 1731262802 T^{2} - 76748134547280 T^{3} + 3424209143194800779 T^{4} - 76748134547280 p^{5} T^{5} + 1731262802 p^{10} T^{6} - 67508 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 + 75723 T + 1872823325 T^{2} + 87906769364370 T^{3} + 5344056371181586764 T^{4} + 87906769364370 p^{5} T^{5} + 1872823325 p^{10} T^{6} + 75723 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 + 8992 T - 681216182 T^{2} + 8992 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 3201 T - 2300766979 T^{2} - 5874250509006 T^{3} + 1021915489991879958 T^{4} - 5874250509006 p^{5} T^{5} - 2300766979 p^{10} T^{6} + 3201 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 + 26612 T - 3289450441 T^{2} - 57387814991556 T^{3} + 4333754463066999968 T^{4} - 57387814991556 p^{5} T^{5} - 3289450441 p^{10} T^{6} + 26612 p^{15} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 - 949 T + 367057696 T^{2} - 949 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 176562 T + 12318337010 T^{2} - 1357352851108032 T^{3} + \)\(15\!\cdots\!99\)\( T^{4} - 1357352851108032 p^{5} T^{5} + 12318337010 p^{10} T^{6} - 176562 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 - 129423 T + 11942811256 T^{2} - 129423 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60265475787005885523531859905, −7.50662608048168609205794364016, −7.31594869983354040218129889810, −6.96270304934182491780245541264, −6.75756850157364672983408263036, −6.16221680042365728170294524695, −6.11807911051165345421185958271, −6.02060327468357356532514031778, −5.91126277404953145765458783994, −5.04821341870029481448958778208, −4.89996542908997233300932179086, −4.80177503316309585991159397724, −4.56845285496617647628659917294, −4.17146902968841297812886795462, −3.73973190031628130907894059642, −3.42034549365550281877376625769, −3.38478337584057942038021712558, −2.57326640511419660239006376063, −2.49557265211285296202468567236, −1.88723688085889009487778301271, −1.60485374640931317454032050579, −1.08414002896829867392297372945, −0.823118429253004335813725830263, −0.50703506543731530270446824941, −0.092742387068855774462298142356, 0.092742387068855774462298142356, 0.50703506543731530270446824941, 0.823118429253004335813725830263, 1.08414002896829867392297372945, 1.60485374640931317454032050579, 1.88723688085889009487778301271, 2.49557265211285296202468567236, 2.57326640511419660239006376063, 3.38478337584057942038021712558, 3.42034549365550281877376625769, 3.73973190031628130907894059642, 4.17146902968841297812886795462, 4.56845285496617647628659917294, 4.80177503316309585991159397724, 4.89996542908997233300932179086, 5.04821341870029481448958778208, 5.91126277404953145765458783994, 6.02060327468357356532514031778, 6.11807911051165345421185958271, 6.16221680042365728170294524695, 6.75756850157364672983408263036, 6.96270304934182491780245541264, 7.31594869983354040218129889810, 7.50662608048168609205794364016, 7.60265475787005885523531859905

Graph of the $Z$-function along the critical line