Properties

Label 8-294e4-1.1-c5e4-0-7
Degree 88
Conductor 74711820967471182096
Sign 11
Analytic cond. 4.94346×1064.94346\times 10^{6}
Root an. cond. 6.866796.86679
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 18·3-s + 16·4-s + 17·5-s + 144·6-s − 128·8-s + 81·9-s + 136·10-s − 145·11-s + 288·12-s + 1.43e3·13-s + 306·15-s − 1.02e3·16-s + 1.37e3·17-s + 648·18-s + 1.08e3·19-s + 272·20-s − 1.16e3·22-s + 4.50e3·23-s − 2.30e3·24-s + 136·25-s + 1.14e4·26-s − 1.45e3·27-s + 1.57e4·29-s + 2.44e3·30-s + 8.81e3·31-s − 2.04e3·32-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 1/2·4-s + 0.304·5-s + 1.63·6-s − 0.707·8-s + 1/3·9-s + 0.430·10-s − 0.361·11-s + 0.577·12-s + 2.34·13-s + 0.351·15-s − 16-s + 1.15·17-s + 0.471·18-s + 0.686·19-s + 0.152·20-s − 0.510·22-s + 1.77·23-s − 0.816·24-s + 0.0435·25-s + 3.31·26-s − 0.384·27-s + 3.47·29-s + 0.496·30-s + 1.64·31-s − 0.353·32-s + ⋯

Functional equation

Λ(s)=((243478)s/2ΓC(s)4L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}
Λ(s)=((243478)s/2ΓC(s+5/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2434782^{4} \cdot 3^{4} \cdot 7^{8}
Sign: 11
Analytic conductor: 4.94346×1064.94346\times 10^{6}
Root analytic conductor: 6.866796.86679
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 243478, ( :5/2,5/2,5/2,5/2), 1)(8,\ 2^{4} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )

Particular Values

L(3)L(3) \approx 40.9759591840.97595918
L(12)L(\frac12) \approx 40.9759591840.97595918
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 (1p2T+p4T2)2 ( 1 - p^{2} T + p^{4} T^{2} )^{2}
3C2C_2 (1p2T+p4T2)2 ( 1 - p^{2} T + p^{4} T^{2} )^{2}
7 1 1
good5D4×C2D_4\times C_2 117T+153T2+103938T310650254T4+103938p5T5+153p10T617p15T7+p20T8 1 - 17 T + 153 T^{2} + 103938 T^{3} - 10650254 T^{4} + 103938 p^{5} T^{5} + 153 p^{10} T^{6} - 17 p^{15} T^{7} + p^{20} T^{8}
11D4×C2D_4\times C_2 1+145T3207T243191150T328736332052T443191150p5T53207p10T6+145p15T7+p20T8 1 + 145 T - 3207 T^{2} - 43191150 T^{3} - 28736332052 T^{4} - 43191150 p^{5} T^{5} - 3207 p^{10} T^{6} + 145 p^{15} T^{7} + p^{20} T^{8}
13D4D_{4} (155pT+864206T255p6T3+p10T4)2 ( 1 - 55 p T + 864206 T^{2} - 55 p^{6} T^{3} + p^{10} T^{4} )^{2}
17D4×C2D_4\times C_2 11372T+1046574T2+2749356288T33990131643437T4+2749356288p5T5+1046574p10T61372p15T7+p20T8 1 - 1372 T + 1046574 T^{2} + 2749356288 T^{3} - 3990131643437 T^{4} + 2749356288 p^{5} T^{5} + 1046574 p^{10} T^{6} - 1372 p^{15} T^{7} + p^{20} T^{8}
19D4×C2D_4\times C_2 11081T+433999T2+4559264516T38484957649496T4+4559264516p5T5+433999p10T61081p15T7+p20T8 1 - 1081 T + 433999 T^{2} + 4559264516 T^{3} - 8484957649496 T^{4} + 4559264516 p^{5} T^{5} + 433999 p^{10} T^{6} - 1081 p^{15} T^{7} + p^{20} T^{8}
23D4×C2D_4\times C_2 1196pT+2467842T2976381056pT3+146546957639683T4976381056p6T5+2467842p10T6196p16T7+p20T8 1 - 196 p T + 2467842 T^{2} - 976381056 p T^{3} + 146546957639683 T^{4} - 976381056 p^{6} T^{5} + 2467842 p^{10} T^{6} - 196 p^{16} T^{7} + p^{20} T^{8}
29D4D_{4} (17865T+34952518T27865p5T3+p10T4)2 ( 1 - 7865 T + 34952518 T^{2} - 7865 p^{5} T^{3} + p^{10} T^{4} )^{2}
31D4×C2D_4\times C_2 18816T+2245595T2160609526544T3+2651926936135064T4160609526544p5T5+2245595p10T68816p15T7+p20T8 1 - 8816 T + 2245595 T^{2} - 160609526544 T^{3} + 2651926936135064 T^{4} - 160609526544 p^{5} T^{5} + 2245595 p^{10} T^{6} - 8816 p^{15} T^{7} + p^{20} T^{8}
37D4×C2D_4\times C_2 114573T+61179319T2182236764008T3+3324004250276398T4182236764008p5T5+61179319p10T614573p15T7+p20T8 1 - 14573 T + 61179319 T^{2} - 182236764008 T^{3} + 3324004250276398 T^{4} - 182236764008 p^{5} T^{5} + 61179319 p^{10} T^{6} - 14573 p^{15} T^{7} + p^{20} T^{8}
41D4D_{4} (1+7350T+218270722T2+7350p5T3+p10T4)2 ( 1 + 7350 T + 218270722 T^{2} + 7350 p^{5} T^{3} + p^{10} T^{4} )^{2}
43D4D_{4} (1+5921T+278228220T2+5921p5T3+p10T4)2 ( 1 + 5921 T + 278228220 T^{2} + 5921 p^{5} T^{3} + p^{10} T^{4} )^{2}
47D4×C2D_4\times C_2 144808T+1055145014T222131649627488T3+394401192496214403T422131649627488p5T5+1055145014p10T644808p15T7+p20T8 1 - 44808 T + 1055145014 T^{2} - 22131649627488 T^{3} + 394401192496214403 T^{4} - 22131649627488 p^{5} T^{5} + 1055145014 p^{10} T^{6} - 44808 p^{15} T^{7} + p^{20} T^{8}
53D4×C2D_4\times C_2 1+9417T757353913T2+90806398272T3+503800193861521878T4+90806398272p5T5757353913p10T6+9417p15T7+p20T8 1 + 9417 T - 757353913 T^{2} + 90806398272 T^{3} + 503800193861521878 T^{4} + 90806398272 p^{5} T^{5} - 757353913 p^{10} T^{6} + 9417 p^{15} T^{7} + p^{20} T^{8}
59D4×C2D_4\times C_2 1+5077T531271125T24431213438888T3219243170901961256T44431213438888p5T5531271125p10T6+5077p15T7+p20T8 1 + 5077 T - 531271125 T^{2} - 4431213438888 T^{3} - 219243170901961256 T^{4} - 4431213438888 p^{5} T^{5} - 531271125 p^{10} T^{6} + 5077 p^{15} T^{7} + p^{20} T^{8}
61D4×C2D_4\times C_2 142368T290546614T216794736040448T3+2120269165248284219T416794736040448p5T5290546614p10T642368p15T7+p20T8 1 - 42368 T - 290546614 T^{2} - 16794736040448 T^{3} + 2120269165248284219 T^{4} - 16794736040448 p^{5} T^{5} - 290546614 p^{10} T^{6} - 42368 p^{15} T^{7} + p^{20} T^{8}
67D4×C2D_4\times C_2 1+30501T1380866887T211867095015326T3+2262669185659976988T411867095015326p5T51380866887p10T6+30501p15T7+p20T8 1 + 30501 T - 1380866887 T^{2} - 11867095015326 T^{3} + 2262669185659976988 T^{4} - 11867095015326 p^{5} T^{5} - 1380866887 p^{10} T^{6} + 30501 p^{15} T^{7} + p^{20} T^{8}
71D4D_{4} (191744T+5413284586T291744p5T3+p10T4)2 ( 1 - 91744 T + 5413284586 T^{2} - 91744 p^{5} T^{3} + p^{10} T^{4} )^{2}
73D4×C2D_4\times C_2 1+85665T+2935374389T2+22013733392250T3123398919101099178T4+22013733392250p5T5+2935374389p10T6+85665p15T7+p20T8 1 + 85665 T + 2935374389 T^{2} + 22013733392250 T^{3} - 123398919101099178 T^{4} + 22013733392250 p^{5} T^{5} + 2935374389 p^{10} T^{6} + 85665 p^{15} T^{7} + p^{20} T^{8}
79D4×C2D_4\times C_2 1+94646T+3492510509T265188188816186T37162029708206797036T465188188816186p5T5+3492510509p10T6+94646p15T7+p20T8 1 + 94646 T + 3492510509 T^{2} - 65188188816186 T^{3} - 7162029708206797036 T^{4} - 65188188816186 p^{5} T^{5} + 3492510509 p^{10} T^{6} + 94646 p^{15} T^{7} + p^{20} T^{8}
83D4D_{4} (1+33841T+8158439620T2+33841p5T3+p10T4)2 ( 1 + 33841 T + 8158439620 T^{2} + 33841 p^{5} T^{3} + p^{10} T^{4} )^{2}
89D4×C2D_4\times C_2 127558T10411241470T270712064288T3+89361702837866877519T470712064288p5T510411241470p10T627558p15T7+p20T8 1 - 27558 T - 10411241470 T^{2} - 70712064288 T^{3} + 89361702837866877519 T^{4} - 70712064288 p^{5} T^{5} - 10411241470 p^{10} T^{6} - 27558 p^{15} T^{7} + p^{20} T^{8}
97D4D_{4} (146671T+13111898848T246671p5T3+p10T4)2 ( 1 - 46671 T + 13111898848 T^{2} - 46671 p^{5} T^{3} + p^{10} T^{4} )^{2}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.909137474388251134975605044039, −7.31511950289873240310058225063, −7.13822978916572095977197972373, −6.73707232042765328082246403822, −6.58472140465714850008773130398, −6.27235775013177953852918428845, −6.15854051986927308290648528615, −5.62696560950992328931978333672, −5.56778190859427566315110239282, −5.32182033156827062176683177934, −4.87587761778495740807983129983, −4.65218874613846960753960728248, −4.28843340980056605450040899466, −4.27314178189335460643023401282, −3.54603006540718093072341253584, −3.51521060250198136938902874586, −3.27166975522654527170443825394, −2.88837106324707741735551364692, −2.61629709482229829887315325955, −2.57189811406291981292522892393, −1.93049386791112649505341113218, −1.20665716773495165276883170875, −1.01014158302140210497071994057, −0.997238767269191879975185284191, −0.50510047752826556181187544364, 0.50510047752826556181187544364, 0.997238767269191879975185284191, 1.01014158302140210497071994057, 1.20665716773495165276883170875, 1.93049386791112649505341113218, 2.57189811406291981292522892393, 2.61629709482229829887315325955, 2.88837106324707741735551364692, 3.27166975522654527170443825394, 3.51521060250198136938902874586, 3.54603006540718093072341253584, 4.27314178189335460643023401282, 4.28843340980056605450040899466, 4.65218874613846960753960728248, 4.87587761778495740807983129983, 5.32182033156827062176683177934, 5.56778190859427566315110239282, 5.62696560950992328931978333672, 6.15854051986927308290648528615, 6.27235775013177953852918428845, 6.58472140465714850008773130398, 6.73707232042765328082246403822, 7.13822978916572095977197972373, 7.31511950289873240310058225063, 7.909137474388251134975605044039

Graph of the ZZ-function along the critical line