L(s) = 1 | + 8·2-s + 18·3-s + 16·4-s + 17·5-s + 144·6-s − 128·8-s + 81·9-s + 136·10-s − 145·11-s + 288·12-s + 1.43e3·13-s + 306·15-s − 1.02e3·16-s + 1.37e3·17-s + 648·18-s + 1.08e3·19-s + 272·20-s − 1.16e3·22-s + 4.50e3·23-s − 2.30e3·24-s + 136·25-s + 1.14e4·26-s − 1.45e3·27-s + 1.57e4·29-s + 2.44e3·30-s + 8.81e3·31-s − 2.04e3·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 1/2·4-s + 0.304·5-s + 1.63·6-s − 0.707·8-s + 1/3·9-s + 0.430·10-s − 0.361·11-s + 0.577·12-s + 2.34·13-s + 0.351·15-s − 16-s + 1.15·17-s + 0.471·18-s + 0.686·19-s + 0.152·20-s − 0.510·22-s + 1.77·23-s − 0.816·24-s + 0.0435·25-s + 3.31·26-s − 0.384·27-s + 3.47·29-s + 0.496·30-s + 1.64·31-s − 0.353·32-s + ⋯ |
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅78
|
Sign: |
1
|
Analytic conductor: |
4.94346×106 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅78, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
40.97595918 |
L(21) |
≈ |
40.97595918 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1−p2T+p4T2)2 |
| 3 | C2 | (1−p2T+p4T2)2 |
| 7 | | 1 |
good | 5 | D4×C2 | 1−17T+153T2+103938T3−10650254T4+103938p5T5+153p10T6−17p15T7+p20T8 |
| 11 | D4×C2 | 1+145T−3207T2−43191150T3−28736332052T4−43191150p5T5−3207p10T6+145p15T7+p20T8 |
| 13 | D4 | (1−55pT+864206T2−55p6T3+p10T4)2 |
| 17 | D4×C2 | 1−1372T+1046574T2+2749356288T3−3990131643437T4+2749356288p5T5+1046574p10T6−1372p15T7+p20T8 |
| 19 | D4×C2 | 1−1081T+433999T2+4559264516T3−8484957649496T4+4559264516p5T5+433999p10T6−1081p15T7+p20T8 |
| 23 | D4×C2 | 1−196pT+2467842T2−976381056pT3+146546957639683T4−976381056p6T5+2467842p10T6−196p16T7+p20T8 |
| 29 | D4 | (1−7865T+34952518T2−7865p5T3+p10T4)2 |
| 31 | D4×C2 | 1−8816T+2245595T2−160609526544T3+2651926936135064T4−160609526544p5T5+2245595p10T6−8816p15T7+p20T8 |
| 37 | D4×C2 | 1−14573T+61179319T2−182236764008T3+3324004250276398T4−182236764008p5T5+61179319p10T6−14573p15T7+p20T8 |
| 41 | D4 | (1+7350T+218270722T2+7350p5T3+p10T4)2 |
| 43 | D4 | (1+5921T+278228220T2+5921p5T3+p10T4)2 |
| 47 | D4×C2 | 1−44808T+1055145014T2−22131649627488T3+394401192496214403T4−22131649627488p5T5+1055145014p10T6−44808p15T7+p20T8 |
| 53 | D4×C2 | 1+9417T−757353913T2+90806398272T3+503800193861521878T4+90806398272p5T5−757353913p10T6+9417p15T7+p20T8 |
| 59 | D4×C2 | 1+5077T−531271125T2−4431213438888T3−219243170901961256T4−4431213438888p5T5−531271125p10T6+5077p15T7+p20T8 |
| 61 | D4×C2 | 1−42368T−290546614T2−16794736040448T3+2120269165248284219T4−16794736040448p5T5−290546614p10T6−42368p15T7+p20T8 |
| 67 | D4×C2 | 1+30501T−1380866887T2−11867095015326T3+2262669185659976988T4−11867095015326p5T5−1380866887p10T6+30501p15T7+p20T8 |
| 71 | D4 | (1−91744T+5413284586T2−91744p5T3+p10T4)2 |
| 73 | D4×C2 | 1+85665T+2935374389T2+22013733392250T3−123398919101099178T4+22013733392250p5T5+2935374389p10T6+85665p15T7+p20T8 |
| 79 | D4×C2 | 1+94646T+3492510509T2−65188188816186T3−7162029708206797036T4−65188188816186p5T5+3492510509p10T6+94646p15T7+p20T8 |
| 83 | D4 | (1+33841T+8158439620T2+33841p5T3+p10T4)2 |
| 89 | D4×C2 | 1−27558T−10411241470T2−70712064288T3+89361702837866877519T4−70712064288p5T5−10411241470p10T6−27558p15T7+p20T8 |
| 97 | D4 | (1−46671T+13111898848T2−46671p5T3+p10T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.909137474388251134975605044039, −7.31511950289873240310058225063, −7.13822978916572095977197972373, −6.73707232042765328082246403822, −6.58472140465714850008773130398, −6.27235775013177953852918428845, −6.15854051986927308290648528615, −5.62696560950992328931978333672, −5.56778190859427566315110239282, −5.32182033156827062176683177934, −4.87587761778495740807983129983, −4.65218874613846960753960728248, −4.28843340980056605450040899466, −4.27314178189335460643023401282, −3.54603006540718093072341253584, −3.51521060250198136938902874586, −3.27166975522654527170443825394, −2.88837106324707741735551364692, −2.61629709482229829887315325955, −2.57189811406291981292522892393, −1.93049386791112649505341113218, −1.20665716773495165276883170875, −1.01014158302140210497071994057, −0.997238767269191879975185284191, −0.50510047752826556181187544364,
0.50510047752826556181187544364, 0.997238767269191879975185284191, 1.01014158302140210497071994057, 1.20665716773495165276883170875, 1.93049386791112649505341113218, 2.57189811406291981292522892393, 2.61629709482229829887315325955, 2.88837106324707741735551364692, 3.27166975522654527170443825394, 3.51521060250198136938902874586, 3.54603006540718093072341253584, 4.27314178189335460643023401282, 4.28843340980056605450040899466, 4.65218874613846960753960728248, 4.87587761778495740807983129983, 5.32182033156827062176683177934, 5.56778190859427566315110239282, 5.62696560950992328931978333672, 6.15854051986927308290648528615, 6.27235775013177953852918428845, 6.58472140465714850008773130398, 6.73707232042765328082246403822, 7.13822978916572095977197972373, 7.31511950289873240310058225063, 7.909137474388251134975605044039