Properties

Label 8-294e4-1.1-c5e4-0-7
Degree $8$
Conductor $7471182096$
Sign $1$
Analytic cond. $4.94346\times 10^{6}$
Root an. cond. $6.86679$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 18·3-s + 16·4-s + 17·5-s + 144·6-s − 128·8-s + 81·9-s + 136·10-s − 145·11-s + 288·12-s + 1.43e3·13-s + 306·15-s − 1.02e3·16-s + 1.37e3·17-s + 648·18-s + 1.08e3·19-s + 272·20-s − 1.16e3·22-s + 4.50e3·23-s − 2.30e3·24-s + 136·25-s + 1.14e4·26-s − 1.45e3·27-s + 1.57e4·29-s + 2.44e3·30-s + 8.81e3·31-s − 2.04e3·32-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 1/2·4-s + 0.304·5-s + 1.63·6-s − 0.707·8-s + 1/3·9-s + 0.430·10-s − 0.361·11-s + 0.577·12-s + 2.34·13-s + 0.351·15-s − 16-s + 1.15·17-s + 0.471·18-s + 0.686·19-s + 0.152·20-s − 0.510·22-s + 1.77·23-s − 0.816·24-s + 0.0435·25-s + 3.31·26-s − 0.384·27-s + 3.47·29-s + 0.496·30-s + 1.64·31-s − 0.353·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(4.94346\times 10^{6}\)
Root analytic conductor: \(6.86679\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(40.97595918\)
\(L(\frac12)\) \(\approx\) \(40.97595918\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2} \)
3$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2} \)
7 \( 1 \)
good5$D_4\times C_2$ \( 1 - 17 T + 153 T^{2} + 103938 T^{3} - 10650254 T^{4} + 103938 p^{5} T^{5} + 153 p^{10} T^{6} - 17 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 + 145 T - 3207 T^{2} - 43191150 T^{3} - 28736332052 T^{4} - 43191150 p^{5} T^{5} - 3207 p^{10} T^{6} + 145 p^{15} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 - 55 p T + 864206 T^{2} - 55 p^{6} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 1372 T + 1046574 T^{2} + 2749356288 T^{3} - 3990131643437 T^{4} + 2749356288 p^{5} T^{5} + 1046574 p^{10} T^{6} - 1372 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 - 1081 T + 433999 T^{2} + 4559264516 T^{3} - 8484957649496 T^{4} + 4559264516 p^{5} T^{5} + 433999 p^{10} T^{6} - 1081 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 - 196 p T + 2467842 T^{2} - 976381056 p T^{3} + 146546957639683 T^{4} - 976381056 p^{6} T^{5} + 2467842 p^{10} T^{6} - 196 p^{16} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 - 7865 T + 34952518 T^{2} - 7865 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 8816 T + 2245595 T^{2} - 160609526544 T^{3} + 2651926936135064 T^{4} - 160609526544 p^{5} T^{5} + 2245595 p^{10} T^{6} - 8816 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 - 14573 T + 61179319 T^{2} - 182236764008 T^{3} + 3324004250276398 T^{4} - 182236764008 p^{5} T^{5} + 61179319 p^{10} T^{6} - 14573 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 + 7350 T + 218270722 T^{2} + 7350 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 5921 T + 278228220 T^{2} + 5921 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 44808 T + 1055145014 T^{2} - 22131649627488 T^{3} + 394401192496214403 T^{4} - 22131649627488 p^{5} T^{5} + 1055145014 p^{10} T^{6} - 44808 p^{15} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 + 9417 T - 757353913 T^{2} + 90806398272 T^{3} + 503800193861521878 T^{4} + 90806398272 p^{5} T^{5} - 757353913 p^{10} T^{6} + 9417 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 + 5077 T - 531271125 T^{2} - 4431213438888 T^{3} - 219243170901961256 T^{4} - 4431213438888 p^{5} T^{5} - 531271125 p^{10} T^{6} + 5077 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 42368 T - 290546614 T^{2} - 16794736040448 T^{3} + 2120269165248284219 T^{4} - 16794736040448 p^{5} T^{5} - 290546614 p^{10} T^{6} - 42368 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 + 30501 T - 1380866887 T^{2} - 11867095015326 T^{3} + 2262669185659976988 T^{4} - 11867095015326 p^{5} T^{5} - 1380866887 p^{10} T^{6} + 30501 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 - 91744 T + 5413284586 T^{2} - 91744 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 85665 T + 2935374389 T^{2} + 22013733392250 T^{3} - 123398919101099178 T^{4} + 22013733392250 p^{5} T^{5} + 2935374389 p^{10} T^{6} + 85665 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 + 94646 T + 3492510509 T^{2} - 65188188816186 T^{3} - 7162029708206797036 T^{4} - 65188188816186 p^{5} T^{5} + 3492510509 p^{10} T^{6} + 94646 p^{15} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 + 33841 T + 8158439620 T^{2} + 33841 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 27558 T - 10411241470 T^{2} - 70712064288 T^{3} + 89361702837866877519 T^{4} - 70712064288 p^{5} T^{5} - 10411241470 p^{10} T^{6} - 27558 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 - 46671 T + 13111898848 T^{2} - 46671 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.909137474388251134975605044039, −7.31511950289873240310058225063, −7.13822978916572095977197972373, −6.73707232042765328082246403822, −6.58472140465714850008773130398, −6.27235775013177953852918428845, −6.15854051986927308290648528615, −5.62696560950992328931978333672, −5.56778190859427566315110239282, −5.32182033156827062176683177934, −4.87587761778495740807983129983, −4.65218874613846960753960728248, −4.28843340980056605450040899466, −4.27314178189335460643023401282, −3.54603006540718093072341253584, −3.51521060250198136938902874586, −3.27166975522654527170443825394, −2.88837106324707741735551364692, −2.61629709482229829887315325955, −2.57189811406291981292522892393, −1.93049386791112649505341113218, −1.20665716773495165276883170875, −1.01014158302140210497071994057, −0.997238767269191879975185284191, −0.50510047752826556181187544364, 0.50510047752826556181187544364, 0.997238767269191879975185284191, 1.01014158302140210497071994057, 1.20665716773495165276883170875, 1.93049386791112649505341113218, 2.57189811406291981292522892393, 2.61629709482229829887315325955, 2.88837106324707741735551364692, 3.27166975522654527170443825394, 3.51521060250198136938902874586, 3.54603006540718093072341253584, 4.27314178189335460643023401282, 4.28843340980056605450040899466, 4.65218874613846960753960728248, 4.87587761778495740807983129983, 5.32182033156827062176683177934, 5.56778190859427566315110239282, 5.62696560950992328931978333672, 6.15854051986927308290648528615, 6.27235775013177953852918428845, 6.58472140465714850008773130398, 6.73707232042765328082246403822, 7.13822978916572095977197972373, 7.31511950289873240310058225063, 7.909137474388251134975605044039

Graph of the $Z$-function along the critical line