L(s) = 1 | + 16·2-s − 54·3-s + 64·4-s − 540·5-s − 864·6-s − 1.02e3·8-s + 729·9-s − 8.64e3·10-s − 1.19e3·11-s − 3.45e3·12-s − 2.46e4·13-s + 2.91e4·15-s − 1.63e4·16-s − 2.94e4·17-s + 1.16e4·18-s + 4.70e4·19-s − 3.45e4·20-s − 1.91e4·22-s + 9.40e4·23-s + 5.52e4·24-s + 2.26e5·25-s − 3.93e5·26-s + 3.93e4·27-s − 3.41e5·29-s + 4.66e5·30-s + 2.58e5·31-s − 6.55e4·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 1/2·4-s − 1.93·5-s − 1.63·6-s − 0.707·8-s + 1/3·9-s − 2.73·10-s − 0.270·11-s − 0.577·12-s − 3.10·13-s + 2.23·15-s − 16-s − 1.45·17-s + 0.471·18-s + 1.57·19-s − 0.965·20-s − 0.383·22-s + 1.61·23-s + 0.816·24-s + 2.90·25-s − 4.39·26-s + 0.384·27-s − 2.59·29-s + 3.15·30-s + 1.56·31-s − 0.353·32-s + ⋯ |
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s)4L(s)Λ(8−s)
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s+7/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅78
|
Sign: |
1
|
Analytic conductor: |
7.11459×107 |
Root analytic conductor: |
9.58338 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅78, ( :7/2,7/2,7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
0.01721302053 |
L(21) |
≈ |
0.01721302053 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1−p3T+p6T2)2 |
| 3 | C2 | (1+p3T+p6T2)2 |
| 7 | | 1 |
good | 5 | D4×C2 | 1+108pT+2596p2T2+304344p3T3+36012999p4T4+304344p10T5+2596p16T6+108p22T7+p28T8 |
| 11 | D4×C2 | 1+1196T−27613882T2−11876332624T3+435946651536427T4−11876332624p7T5−27613882p14T6+1196p21T7+p28T8 |
| 13 | D4 | (1+12312T+99570968T2+12312p7T3+p14T4)2 |
| 17 | D4×C2 | 1+29484T+322588204T2−8077415824296T3−226187173694364513T4−8077415824296p7T5+322588204p14T6+29484p21T7+p28T8 |
| 19 | D4×C2 | 1−47088T+902711442T2+22280872687488T3−1052880565778475733T4+22280872687488p7T5+902711442p14T6−47088p21T7+p28T8 |
| 23 | D4×C2 | 1−94052T+1475279102T2−52748942684816T3+12613095628633527907T4−52748942684816p7T5+1475279102p14T6−94052p21T7+p28T8 |
| 29 | D4 | (1+170600T+41693255666T2+170600p7T3+p14T4)2 |
| 31 | D4×C2 | 1−258984T−4480363142T2−4280447973029184T3+25⋯67T4−4280447973029184p7T5−4480363142p14T6−258984p21T7+p28T8 |
| 37 | D4×C2 | 1−648856T+135997011478T2−61740817520417152T3+32⋯87T4−61740817520417152p7T5+135997011478p14T6−648856p21T7+p28T8 |
| 41 | D4 | (1+605556T+416076703796T2+605556p7T3+p14T4)2 |
| 43 | D4 | (1+698480T+535788255846T2+698480p7T3+p14T4)2 |
| 47 | D4×C2 | 1+816912T−486667751318T2+114994027781212032T3+73⋯03T4+114994027781212032p7T5−486667751318p14T6+816912p21T7+p28T8 |
| 53 | D4×C2 | 1−1923508T+481825150322T2−1670827518121566544T3+46⋯27T4−1670827518121566544p7T5+481825150322p14T6−1923508p21T7+p28T8 |
| 59 | D4×C2 | 1−81864T−2292506761454T2+219239527631274432T3−92⋯85T4+219239527631274432p7T5−2292506761454p14T6−81864p21T7+p28T8 |
| 61 | D4×C2 | 1+1616544T−1741805663448T2−3120682428761861952T3+87⋯59T4−3120682428761861952p7T5−1741805663448p14T6+1616544p21T7+p28T8 |
| 67 | D4×C2 | 1−5424T−2686337401526T2+51175745855801856T3−29⋯73T4+51175745855801856p7T5−2686337401526p14T6−5424p21T7+p28T8 |
| 71 | D4 | (1+2492964T+2402383804306T2+2492964p7T3+p14T4)2 |
| 73 | D4×C2 | 1+4710744T−4712548213920T2+22653309377619710928T3+35⋯35T4+22653309377619710928p7T5−4712548213920p14T6+4710744p21T7+p28T8 |
| 79 | D4×C2 | 1+3416656T−16415423029118T2−35255983728480310784T3+19⋯11T4−35255983728480310784p7T5−16415423029118p14T6+3416656p21T7+p28T8 |
| 83 | D4 | (1−8921448T+74139859271942T2−8921448p7T3+p14T4)2 |
| 89 | D4×C2 | 1+12374532T+36847841483068T2+34⋯36T3+47⋯99T4+34⋯36p7T5+36847841483068p14T6+12374532p21T7+p28T8 |
| 97 | D4 | (1+11296584T+159222144655440T2+11296584p7T3+p14T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.19372717166763524443282543548, −7.00354555392393071973063247600, −6.96071209148334155809625143481, −6.48274049469276865503516575472, −6.19387862859329543480327377574, −5.96555986252891626465538329424, −5.41341351146950740890345396633, −5.27800530453057311643096538219, −5.07105035655427737807322838605, −4.83396623303813100283414273479, −4.67450372833506227838485553143, −4.63088673542699286657070684565, −4.22361973486608987298016253571, −3.67785906461735388962655685822, −3.64922001297478728360651975081, −3.20604284257515557751206280502, −2.96683272339681349683729663882, −2.65826338405347393626656597972, −2.50631735738321991031330012456, −1.99456571732652508579446822834, −1.44784042333171460711734877705, −1.12791331367024790688645648651, −0.71555204598066805016290251408, −0.13933595057218425724855472398, −0.06201554794410873072722200407,
0.06201554794410873072722200407, 0.13933595057218425724855472398, 0.71555204598066805016290251408, 1.12791331367024790688645648651, 1.44784042333171460711734877705, 1.99456571732652508579446822834, 2.50631735738321991031330012456, 2.65826338405347393626656597972, 2.96683272339681349683729663882, 3.20604284257515557751206280502, 3.64922001297478728360651975081, 3.67785906461735388962655685822, 4.22361973486608987298016253571, 4.63088673542699286657070684565, 4.67450372833506227838485553143, 4.83396623303813100283414273479, 5.07105035655427737807322838605, 5.27800530453057311643096538219, 5.41341351146950740890345396633, 5.96555986252891626465538329424, 6.19387862859329543480327377574, 6.48274049469276865503516575472, 6.96071209148334155809625143481, 7.00354555392393071973063247600, 7.19372717166763524443282543548