Properties

Label 8-294e4-1.1-c7e4-0-7
Degree 88
Conductor 74711820967471182096
Sign 11
Analytic cond. 7.11459×1077.11459\times 10^{7}
Root an. cond. 9.583389.58338
Motivic weight 77
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 108·3-s + 640·4-s + 432·5-s + 3.45e3·6-s + 1.02e4·8-s + 7.29e3·9-s + 1.38e4·10-s + 2.48e3·11-s + 6.91e4·12-s + 1.44e3·13-s + 4.66e4·15-s + 1.43e5·16-s + 2.70e4·17-s + 2.33e5·18-s + 3.05e4·19-s + 2.76e5·20-s + 7.93e4·22-s + 5.34e4·23-s + 1.10e6·24-s − 4.02e3·25-s + 4.60e4·26-s + 3.93e5·27-s + 2.35e5·29-s + 1.49e6·30-s + 1.84e5·31-s + 1.83e6·32-s + ⋯
L(s)  = 1  + 2.82·2-s + 2.30·3-s + 5·4-s + 1.54·5-s + 6.53·6-s + 7.07·8-s + 10/3·9-s + 4.37·10-s + 0.561·11-s + 11.5·12-s + 0.181·13-s + 3.56·15-s + 35/4·16-s + 1.33·17-s + 9.42·18-s + 1.02·19-s + 7.72·20-s + 1.58·22-s + 0.916·23-s + 16.3·24-s − 0.0515·25-s + 0.514·26-s + 3.84·27-s + 1.79·29-s + 10.0·30-s + 1.11·31-s + 9.89·32-s + ⋯

Functional equation

Λ(s)=((243478)s/2ΓC(s)4L(s)=(Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}
Λ(s)=((243478)s/2ΓC(s+7/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2434782^{4} \cdot 3^{4} \cdot 7^{8}
Sign: 11
Analytic conductor: 7.11459×1077.11459\times 10^{7}
Root analytic conductor: 9.583389.58338
Motivic weight: 77
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 243478, ( :7/2,7/2,7/2,7/2), 1)(8,\ 2^{4} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 7/2, 7/2, 7/2, 7/2 ),\ 1 )

Particular Values

L(4)L(4) \approx 688.9595816688.9595816
L(12)L(\frac12) \approx 688.9595816688.9595816
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 (1p3T)4 ( 1 - p^{3} T )^{4}
3C1C_1 (1p3T)4 ( 1 - p^{3} T )^{4}
7 1 1
good5C2C2C2C_2 \wr C_2\wr C_2 1432T+190648T212614832pT3+907884498p2T412614832p8T5+190648p14T6432p21T7+p28T8 1 - 432 T + 190648 T^{2} - 12614832 p T^{3} + 907884498 p^{2} T^{4} - 12614832 p^{8} T^{5} + 190648 p^{14} T^{6} - 432 p^{21} T^{7} + p^{28} T^{8}
11C2C2C2C_2 \wr C_2\wr C_2 12480T+59740196T2111805959536T3+1618585088374102T4111805959536p7T5+59740196p14T62480p21T7+p28T8 1 - 2480 T + 59740196 T^{2} - 111805959536 T^{3} + 1618585088374102 T^{4} - 111805959536 p^{7} T^{5} + 59740196 p^{14} T^{6} - 2480 p^{21} T^{7} + p^{28} T^{8}
13C2C2C2C_2 \wr C_2\wr C_2 11440T+56074624T2+29771816544T3+2267043743749362T4+29771816544p7T5+56074624p14T61440p21T7+p28T8 1 - 1440 T + 56074624 T^{2} + 29771816544 T^{3} + 2267043743749362 T^{4} + 29771816544 p^{7} T^{5} + 56074624 p^{14} T^{6} - 1440 p^{21} T^{7} + p^{28} T^{8}
17C2C2C2C_2 \wr C_2\wr C_2 127072T+1635253144T231709814138432T3+1001071599081187890T431709814138432p7T5+1635253144p14T627072p21T7+p28T8 1 - 27072 T + 1635253144 T^{2} - 31709814138432 T^{3} + 1001071599081187890 T^{4} - 31709814138432 p^{7} T^{5} + 1635253144 p^{14} T^{6} - 27072 p^{21} T^{7} + p^{28} T^{8}
19C2C2C2C_2 \wr C_2\wr C_2 130528T+3717257628T24218172470720pT3+5038692200546617334T44218172470720p8T5+3717257628p14T630528p21T7+p28T8 1 - 30528 T + 3717257628 T^{2} - 4218172470720 p T^{3} + 5038692200546617334 T^{4} - 4218172470720 p^{8} T^{5} + 3717257628 p^{14} T^{6} - 30528 p^{21} T^{7} + p^{28} T^{8}
23C2C2C2C_2 \wr C_2\wr C_2 153488T+8728400564T2405165729353968T3+40707647955019235206T4405165729353968p7T5+8728400564p14T653488p21T7+p28T8 1 - 53488 T + 8728400564 T^{2} - 405165729353968 T^{3} + 40707647955019235206 T^{4} - 405165729353968 p^{7} T^{5} + 8728400564 p^{14} T^{6} - 53488 p^{21} T^{7} + p^{28} T^{8}
29C2C2C2C_2 \wr C_2\wr C_2 1235648T+63890916260T211153976826625920T3+ 1 - 235648 T + 63890916260 T^{2} - 11153976826625920 T^{3} + 16 ⁣ ⁣4616\!\cdots\!46T411153976826625920p7T5+63890916260p14T6235648p21T7+p28T8 T^{4} - 11153976826625920 p^{7} T^{5} + 63890916260 p^{14} T^{6} - 235648 p^{21} T^{7} + p^{28} T^{8}
31C2C2C2C_2 \wr C_2\wr C_2 1184176T+35953363852T27530797381676336T3+ 1 - 184176 T + 35953363852 T^{2} - 7530797381676336 T^{3} + 20 ⁣ ⁣4620\!\cdots\!46T47530797381676336p7T5+35953363852p14T6184176p21T7+p28T8 T^{4} - 7530797381676336 p^{7} T^{5} + 35953363852 p^{14} T^{6} - 184176 p^{21} T^{7} + p^{28} T^{8}
37C2C2C2C_2 \wr C_2\wr C_2 1503776T+436986306964T2142087830588630304T3+ 1 - 503776 T + 436986306964 T^{2} - 142087830588630304 T^{3} + 64 ⁣ ⁣4664\!\cdots\!46T4142087830588630304p7T5+436986306964p14T6503776p21T7+p28T8 T^{4} - 142087830588630304 p^{7} T^{5} + 436986306964 p^{14} T^{6} - 503776 p^{21} T^{7} + p^{28} T^{8}
41C2C2C2C_2 \wr C_2\wr C_2 1214272T+496447580920T2100659148934749056T3+ 1 - 214272 T + 496447580920 T^{2} - 100659148934749056 T^{3} + 12 ⁣ ⁣2212\!\cdots\!22T4100659148934749056p7T5+496447580920p14T6214272p21T7+p28T8 T^{4} - 100659148934749056 p^{7} T^{5} + 496447580920 p^{14} T^{6} - 214272 p^{21} T^{7} + p^{28} T^{8}
43C2C2C2C_2 \wr C_2\wr C_2 1395888T+619725191308T2127232980858483184T3+ 1 - 395888 T + 619725191308 T^{2} - 127232980858483184 T^{3} + 17 ⁣ ⁣3017\!\cdots\!30T4127232980858483184p7T5+619725191308p14T6395888p21T7+p28T8 T^{4} - 127232980858483184 p^{7} T^{5} + 619725191308 p^{14} T^{6} - 395888 p^{21} T^{7} + p^{28} T^{8}
47C2C2C2C_2 \wr C_2\wr C_2 11744416T+2547929579692T22329761876971133600T3+ 1 - 1744416 T + 2547929579692 T^{2} - 2329761876971133600 T^{3} + 19 ⁣ ⁣3019\!\cdots\!30T42329761876971133600p7T5+2547929579692p14T61744416p21T7+p28T8 T^{4} - 2329761876971133600 p^{7} T^{5} + 2547929579692 p^{14} T^{6} - 1744416 p^{21} T^{7} + p^{28} T^{8}
53C2C2C2C_2 \wr C_2\wr C_2 1+1334920T+3981051749900T2+4670434457586515800T3+ 1 + 1334920 T + 3981051749900 T^{2} + 4670434457586515800 T^{3} + 66 ⁣ ⁣8666\!\cdots\!86T4+4670434457586515800p7T5+3981051749900p14T6+1334920p21T7+p28T8 T^{4} + 4670434457586515800 p^{7} T^{5} + 3981051749900 p^{14} T^{6} + 1334920 p^{21} T^{7} + p^{28} T^{8}
59C2C2C2C_2 \wr C_2\wr C_2 14631760T+15165934823068T232594403718021327056T3+ 1 - 4631760 T + 15165934823068 T^{2} - 32594403718021327056 T^{3} + 59 ⁣ ⁣3459\!\cdots\!34T432594403718021327056p7T5+15165934823068p14T64631760p21T7+p28T8 T^{4} - 32594403718021327056 p^{7} T^{5} + 15165934823068 p^{14} T^{6} - 4631760 p^{21} T^{7} + p^{28} T^{8}
61C2C2C2C_2 \wr C_2\wr C_2 16092352T+21058525356768T254021710833737885504T3+ 1 - 6092352 T + 21058525356768 T^{2} - 54021710833737885504 T^{3} + 10 ⁣ ⁣2610\!\cdots\!26T454021710833737885504p7T5+21058525356768p14T66092352p21T7+p28T8 T^{4} - 54021710833737885504 p^{7} T^{5} + 21058525356768 p^{14} T^{6} - 6092352 p^{21} T^{7} + p^{28} T^{8}
67C2C2C2C_2 \wr C_2\wr C_2 1+5122512T+18267532531756T2+49262014256081032656T3+ 1 + 5122512 T + 18267532531756 T^{2} + 49262014256081032656 T^{3} + 13 ⁣ ⁣7013\!\cdots\!70T4+49262014256081032656p7T5+18267532531756p14T6+5122512p21T7+p28T8 T^{4} + 49262014256081032656 p^{7} T^{5} + 18267532531756 p^{14} T^{6} + 5122512 p^{21} T^{7} + p^{28} T^{8}
71C2C2C2C_2 \wr C_2\wr C_2 1461040T+19237048343348T2+14944485580862546448T3+ 1 - 461040 T + 19237048343348 T^{2} + 14944485580862546448 T^{3} + 18 ⁣ ⁣3818\!\cdots\!38T4+14944485580862546448p7T5+19237048343348p14T6461040p21T7+p28T8 T^{4} + 14944485580862546448 p^{7} T^{5} + 19237048343348 p^{14} T^{6} - 461040 p^{21} T^{7} + p^{28} T^{8}
73C2C2C2C_2 \wr C_2\wr C_2 110829376T+83808788358144T2 1 - 10829376 T + 83808788358144 T^{2} - 41 ⁣ ⁣4441\!\cdots\!44T3+ T^{3} + 16 ⁣ ⁣9016\!\cdots\!90T4 T^{4} - 41 ⁣ ⁣4441\!\cdots\!44p7T5+83808788358144p14T610829376p21T7+p28T8 p^{7} T^{5} + 83808788358144 p^{14} T^{6} - 10829376 p^{21} T^{7} + p^{28} T^{8}
79C2C2C2C_2 \wr C_2\wr C_2 1+3557632T+47775835622140T2+ 1 + 3557632 T + 47775835622140 T^{2} + 13 ⁣ ⁣1613\!\cdots\!16T3+ T^{3} + 12 ⁣ ⁣9412\!\cdots\!94T4+ T^{4} + 13 ⁣ ⁣1613\!\cdots\!16p7T5+47775835622140p14T6+3557632p21T7+p28T8 p^{7} T^{5} + 47775835622140 p^{14} T^{6} + 3557632 p^{21} T^{7} + p^{28} T^{8}
83C2C2C2C_2 \wr C_2\wr C_2 1+3444624T+1243992844876T237212415728157377648T3+ 1 + 3444624 T + 1243992844876 T^{2} - 37212415728157377648 T^{3} + 52 ⁣ ⁣3452\!\cdots\!34T437212415728157377648p7T5+1243992844876p14T6+3444624p21T7+p28T8 T^{4} - 37212415728157377648 p^{7} T^{5} + 1243992844876 p^{14} T^{6} + 3444624 p^{21} T^{7} + p^{28} T^{8}
89C2C2C2C_2 \wr C_2\wr C_2 13204576T+127653068645464T2 1 - 3204576 T + 127653068645464 T^{2} - 30 ⁣ ⁣2430\!\cdots\!24T3+ T^{3} + 73 ⁣ ⁣1873\!\cdots\!18T4 T^{4} - 30 ⁣ ⁣2430\!\cdots\!24p7T5+127653068645464p14T63204576p21T7+p28T8 p^{7} T^{5} + 127653068645464 p^{14} T^{6} - 3204576 p^{21} T^{7} + p^{28} T^{8}
97C2C2C2C_2 \wr C_2\wr C_2 116248960T+219658387678656T2 1 - 16248960 T + 219658387678656 T^{2} - 24 ⁣ ⁣7224\!\cdots\!72T3+ T^{3} + 27 ⁣ ⁣4227\!\cdots\!42T4 T^{4} - 24 ⁣ ⁣7224\!\cdots\!72p7T5+219658387678656p14T616248960p21T7+p28T8 p^{7} T^{5} + 219658387678656 p^{14} T^{6} - 16248960 p^{21} T^{7} + p^{28} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.43439565853682578152575826077, −6.71622723097681283980808458657, −6.56880209676471540239433366017, −6.54594149627317538159833892758, −6.42556692668942198952784779981, −5.68166223332194442748057670084, −5.62104430688233967436833886141, −5.39106382715656638624091213413, −5.36823777307391192182720328229, −4.74689803713131714790165642052, −4.40926910333766648321515979843, −4.35964033964144288277721871593, −4.04255439868744717877772238990, −3.67306397474442046051610373161, −3.35387348397250912778543798592, −3.30475606860958467644744481616, −2.96100217801967370882917396778, −2.44582926810639309424865245139, −2.39243587370634453578945786503, −2.21866081728806916582976278010, −2.13674351021043793543783724775, −1.23702760585026243718563805624, −1.17138408399962556064806464028, −0.992790198796595882841217346599, −0.800436422179485120800771089896, 0.800436422179485120800771089896, 0.992790198796595882841217346599, 1.17138408399962556064806464028, 1.23702760585026243718563805624, 2.13674351021043793543783724775, 2.21866081728806916582976278010, 2.39243587370634453578945786503, 2.44582926810639309424865245139, 2.96100217801967370882917396778, 3.30475606860958467644744481616, 3.35387348397250912778543798592, 3.67306397474442046051610373161, 4.04255439868744717877772238990, 4.35964033964144288277721871593, 4.40926910333766648321515979843, 4.74689803713131714790165642052, 5.36823777307391192182720328229, 5.39106382715656638624091213413, 5.62104430688233967436833886141, 5.68166223332194442748057670084, 6.42556692668942198952784779981, 6.54594149627317538159833892758, 6.56880209676471540239433366017, 6.71622723097681283980808458657, 7.43439565853682578152575826077

Graph of the ZZ-function along the critical line