L(s) = 1 | + 32·2-s + 108·3-s + 640·4-s + 432·5-s + 3.45e3·6-s + 1.02e4·8-s + 7.29e3·9-s + 1.38e4·10-s + 2.48e3·11-s + 6.91e4·12-s + 1.44e3·13-s + 4.66e4·15-s + 1.43e5·16-s + 2.70e4·17-s + 2.33e5·18-s + 3.05e4·19-s + 2.76e5·20-s + 7.93e4·22-s + 5.34e4·23-s + 1.10e6·24-s − 4.02e3·25-s + 4.60e4·26-s + 3.93e5·27-s + 2.35e5·29-s + 1.49e6·30-s + 1.84e5·31-s + 1.83e6·32-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 2.30·3-s + 5·4-s + 1.54·5-s + 6.53·6-s + 7.07·8-s + 10/3·9-s + 4.37·10-s + 0.561·11-s + 11.5·12-s + 0.181·13-s + 3.56·15-s + 35/4·16-s + 1.33·17-s + 9.42·18-s + 1.02·19-s + 7.72·20-s + 1.58·22-s + 0.916·23-s + 16.3·24-s − 0.0515·25-s + 0.514·26-s + 3.84·27-s + 1.79·29-s + 10.0·30-s + 1.11·31-s + 9.89·32-s + ⋯ |
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s)4L(s)Λ(8−s)
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s+7/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅78
|
Sign: |
1
|
Analytic conductor: |
7.11459×107 |
Root analytic conductor: |
9.58338 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅78, ( :7/2,7/2,7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
688.9595816 |
L(21) |
≈ |
688.9595816 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−p3T)4 |
| 3 | C1 | (1−p3T)4 |
| 7 | | 1 |
good | 5 | C2≀C2≀C2 | 1−432T+190648T2−12614832pT3+907884498p2T4−12614832p8T5+190648p14T6−432p21T7+p28T8 |
| 11 | C2≀C2≀C2 | 1−2480T+59740196T2−111805959536T3+1618585088374102T4−111805959536p7T5+59740196p14T6−2480p21T7+p28T8 |
| 13 | C2≀C2≀C2 | 1−1440T+56074624T2+29771816544T3+2267043743749362T4+29771816544p7T5+56074624p14T6−1440p21T7+p28T8 |
| 17 | C2≀C2≀C2 | 1−27072T+1635253144T2−31709814138432T3+1001071599081187890T4−31709814138432p7T5+1635253144p14T6−27072p21T7+p28T8 |
| 19 | C2≀C2≀C2 | 1−30528T+3717257628T2−4218172470720pT3+5038692200546617334T4−4218172470720p8T5+3717257628p14T6−30528p21T7+p28T8 |
| 23 | C2≀C2≀C2 | 1−53488T+8728400564T2−405165729353968T3+40707647955019235206T4−405165729353968p7T5+8728400564p14T6−53488p21T7+p28T8 |
| 29 | C2≀C2≀C2 | 1−235648T+63890916260T2−11153976826625920T3+16⋯46T4−11153976826625920p7T5+63890916260p14T6−235648p21T7+p28T8 |
| 31 | C2≀C2≀C2 | 1−184176T+35953363852T2−7530797381676336T3+20⋯46T4−7530797381676336p7T5+35953363852p14T6−184176p21T7+p28T8 |
| 37 | C2≀C2≀C2 | 1−503776T+436986306964T2−142087830588630304T3+64⋯46T4−142087830588630304p7T5+436986306964p14T6−503776p21T7+p28T8 |
| 41 | C2≀C2≀C2 | 1−214272T+496447580920T2−100659148934749056T3+12⋯22T4−100659148934749056p7T5+496447580920p14T6−214272p21T7+p28T8 |
| 43 | C2≀C2≀C2 | 1−395888T+619725191308T2−127232980858483184T3+17⋯30T4−127232980858483184p7T5+619725191308p14T6−395888p21T7+p28T8 |
| 47 | C2≀C2≀C2 | 1−1744416T+2547929579692T2−2329761876971133600T3+19⋯30T4−2329761876971133600p7T5+2547929579692p14T6−1744416p21T7+p28T8 |
| 53 | C2≀C2≀C2 | 1+1334920T+3981051749900T2+4670434457586515800T3+66⋯86T4+4670434457586515800p7T5+3981051749900p14T6+1334920p21T7+p28T8 |
| 59 | C2≀C2≀C2 | 1−4631760T+15165934823068T2−32594403718021327056T3+59⋯34T4−32594403718021327056p7T5+15165934823068p14T6−4631760p21T7+p28T8 |
| 61 | C2≀C2≀C2 | 1−6092352T+21058525356768T2−54021710833737885504T3+10⋯26T4−54021710833737885504p7T5+21058525356768p14T6−6092352p21T7+p28T8 |
| 67 | C2≀C2≀C2 | 1+5122512T+18267532531756T2+49262014256081032656T3+13⋯70T4+49262014256081032656p7T5+18267532531756p14T6+5122512p21T7+p28T8 |
| 71 | C2≀C2≀C2 | 1−461040T+19237048343348T2+14944485580862546448T3+18⋯38T4+14944485580862546448p7T5+19237048343348p14T6−461040p21T7+p28T8 |
| 73 | C2≀C2≀C2 | 1−10829376T+83808788358144T2−41⋯44T3+16⋯90T4−41⋯44p7T5+83808788358144p14T6−10829376p21T7+p28T8 |
| 79 | C2≀C2≀C2 | 1+3557632T+47775835622140T2+13⋯16T3+12⋯94T4+13⋯16p7T5+47775835622140p14T6+3557632p21T7+p28T8 |
| 83 | C2≀C2≀C2 | 1+3444624T+1243992844876T2−37212415728157377648T3+52⋯34T4−37212415728157377648p7T5+1243992844876p14T6+3444624p21T7+p28T8 |
| 89 | C2≀C2≀C2 | 1−3204576T+127653068645464T2−30⋯24T3+73⋯18T4−30⋯24p7T5+127653068645464p14T6−3204576p21T7+p28T8 |
| 97 | C2≀C2≀C2 | 1−16248960T+219658387678656T2−24⋯72T3+27⋯42T4−24⋯72p7T5+219658387678656p14T6−16248960p21T7+p28T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43439565853682578152575826077, −6.71622723097681283980808458657, −6.56880209676471540239433366017, −6.54594149627317538159833892758, −6.42556692668942198952784779981, −5.68166223332194442748057670084, −5.62104430688233967436833886141, −5.39106382715656638624091213413, −5.36823777307391192182720328229, −4.74689803713131714790165642052, −4.40926910333766648321515979843, −4.35964033964144288277721871593, −4.04255439868744717877772238990, −3.67306397474442046051610373161, −3.35387348397250912778543798592, −3.30475606860958467644744481616, −2.96100217801967370882917396778, −2.44582926810639309424865245139, −2.39243587370634453578945786503, −2.21866081728806916582976278010, −2.13674351021043793543783724775, −1.23702760585026243718563805624, −1.17138408399962556064806464028, −0.992790198796595882841217346599, −0.800436422179485120800771089896,
0.800436422179485120800771089896, 0.992790198796595882841217346599, 1.17138408399962556064806464028, 1.23702760585026243718563805624, 2.13674351021043793543783724775, 2.21866081728806916582976278010, 2.39243587370634453578945786503, 2.44582926810639309424865245139, 2.96100217801967370882917396778, 3.30475606860958467644744481616, 3.35387348397250912778543798592, 3.67306397474442046051610373161, 4.04255439868744717877772238990, 4.35964033964144288277721871593, 4.40926910333766648321515979843, 4.74689803713131714790165642052, 5.36823777307391192182720328229, 5.39106382715656638624091213413, 5.62104430688233967436833886141, 5.68166223332194442748057670084, 6.42556692668942198952784779981, 6.54594149627317538159833892758, 6.56880209676471540239433366017, 6.71622723097681283980808458657, 7.43439565853682578152575826077