Properties

Label 8-294e4-1.1-c9e4-0-3
Degree 88
Conductor 74711820967471182096
Sign 11
Analytic cond. 5.25701×1085.25701\times 10^{8}
Root an. cond. 12.305312.3053
Motivic weight 99
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·2-s + 324·3-s + 2.56e3·4-s + 88·5-s + 2.07e4·6-s + 8.19e4·8-s + 6.56e4·9-s + 5.63e3·10-s + 4.21e4·11-s + 8.29e5·12-s + 5.25e4·13-s + 2.85e4·15-s + 2.29e6·16-s + 2.28e5·17-s + 4.19e6·18-s + 2.05e5·19-s + 2.25e5·20-s + 2.70e6·22-s + 1.84e5·23-s + 2.65e7·24-s − 2.18e6·25-s + 3.36e6·26-s + 1.06e7·27-s + 6.65e6·29-s + 1.82e6·30-s − 8.02e5·31-s + 5.87e7·32-s + ⋯
L(s)  = 1  + 2.82·2-s + 2.30·3-s + 5·4-s + 0.0629·5-s + 6.53·6-s + 7.07·8-s + 10/3·9-s + 0.178·10-s + 0.868·11-s + 11.5·12-s + 0.510·13-s + 0.145·15-s + 35/4·16-s + 0.664·17-s + 9.42·18-s + 0.361·19-s + 0.314·20-s + 2.45·22-s + 0.137·23-s + 16.3·24-s − 1.11·25-s + 1.44·26-s + 3.84·27-s + 1.74·29-s + 0.411·30-s − 0.156·31-s + 9.89·32-s + ⋯

Functional equation

Λ(s)=((243478)s/2ΓC(s)4L(s)=(Λ(10s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}
Λ(s)=((243478)s/2ΓC(s+9/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2434782^{4} \cdot 3^{4} \cdot 7^{8}
Sign: 11
Analytic conductor: 5.25701×1085.25701\times 10^{8}
Root analytic conductor: 12.305312.3053
Motivic weight: 99
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 243478, ( :9/2,9/2,9/2,9/2), 1)(8,\ 2^{4} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )

Particular Values

L(5)L(5) \approx 507.2636408507.2636408
L(12)L(\frac12) \approx 507.2636408507.2636408
L(112)L(\frac{11}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 (1p4T)4 ( 1 - p^{4} T )^{4}
3C1C_1 (1p4T)4 ( 1 - p^{4} T )^{4}
7 1 1
good5C2S4C_2 \wr S_4 188T+2193651T2+15386124p3T3+195424108984p2T4+15386124p12T5+2193651p18T688p27T7+p36T8 1 - 88 T + 2193651 T^{2} + 15386124 p^{3} T^{3} + 195424108984 p^{2} T^{4} + 15386124 p^{12} T^{5} + 2193651 p^{18} T^{6} - 88 p^{27} T^{7} + p^{36} T^{8}
11C2S4C_2 \wr S_4 142190T+3046779249T2226567259465370T3+9929645667110327656T4226567259465370p9T5+3046779249p18T642190p27T7+p36T8 1 - 42190 T + 3046779249 T^{2} - 226567259465370 T^{3} + 9929645667110327656 T^{4} - 226567259465370 p^{9} T^{5} + 3046779249 p^{18} T^{6} - 42190 p^{27} T^{7} + p^{36} T^{8}
13C2S4C_2 \wr S_4 152586T+7353996437T2650590694730474T376125770069193779056T4650590694730474p9T5+7353996437p18T652586p27T7+p36T8 1 - 52586 T + 7353996437 T^{2} - 650590694730474 T^{3} - 76125770069193779056 T^{4} - 650590694730474 p^{9} T^{5} + 7353996437 p^{18} T^{6} - 52586 p^{27} T^{7} + p^{36} T^{8}
17C2S4C_2 \wr S_4 1228860T+278671046052T249970150445514548T3+ 1 - 228860 T + 278671046052 T^{2} - 49970150445514548 T^{3} + 39 ⁣ ⁣8239\!\cdots\!82T449970150445514548p9T5+278671046052p18T6228860p27T7+p36T8 T^{4} - 49970150445514548 p^{9} T^{5} + 278671046052 p^{18} T^{6} - 228860 p^{27} T^{7} + p^{36} T^{8}
19C2S4C_2 \wr S_4 1205294T+927092798821T2143725360734961162T3+ 1 - 205294 T + 927092798821 T^{2} - 143725360734961162 T^{3} + 41 ⁣ ⁣2041\!\cdots\!20T4143725360734961162p9T5+927092798821p18T6205294p27T7+p36T8 T^{4} - 143725360734961162 p^{9} T^{5} + 927092798821 p^{18} T^{6} - 205294 p^{27} T^{7} + p^{36} T^{8}
23C2S4C_2 \wr S_4 1184060T+5755764671196T2471086641801709292T3+ 1 - 184060 T + 5755764671196 T^{2} - 471086641801709292 T^{3} + 14 ⁣ ⁣5014\!\cdots\!50T4471086641801709292p9T5+5755764671196p18T6184060p27T7+p36T8 T^{4} - 471086641801709292 p^{9} T^{5} + 5755764671196 p^{18} T^{6} - 184060 p^{27} T^{7} + p^{36} T^{8}
29C2S4C_2 \wr S_4 16655460T+44931713744991T2 1 - 6655460 T + 44931713744991 T^{2} - 19 ⁣ ⁣2019\!\cdots\!20T3+ T^{3} + 88 ⁣ ⁣3688\!\cdots\!36T4 T^{4} - 19 ⁣ ⁣2019\!\cdots\!20p9T5+44931713744991p18T66655460p27T7+p36T8 p^{9} T^{5} + 44931713744991 p^{18} T^{6} - 6655460 p^{27} T^{7} + p^{36} T^{8}
31C2S4C_2 \wr S_4 1+802378T3054104118688T2+36173940244272897624T3+ 1 + 802378 T - 3054104118688 T^{2} + 36173940244272897624 T^{3} + 39 ⁣ ⁣2539\!\cdots\!25T4+36173940244272897624p9T53054104118688p18T6+802378p27T7+p36T8 T^{4} + 36173940244272897624 p^{9} T^{5} - 3054104118688 p^{18} T^{6} + 802378 p^{27} T^{7} + p^{36} T^{8}
37C2S4C_2 \wr S_4 1+3681622T+119556972955261T2 1 + 3681622 T + 119556972955261 T^{2} - 60 ⁣ ⁣5460\!\cdots\!54T3 T^{3} - 25 ⁣ ⁣0425\!\cdots\!04T4 T^{4} - 60 ⁣ ⁣5460\!\cdots\!54p9T5+119556972955261p18T6+3681622p27T7+p36T8 p^{9} T^{5} + 119556972955261 p^{18} T^{6} + 3681622 p^{27} T^{7} + p^{36} T^{8}
41C2S4C_2 \wr S_4 121746604T+1186786818878504T2 1 - 21746604 T + 1186786818878504 T^{2} - 16 ⁣ ⁣9216\!\cdots\!92T3+ T^{3} + 53 ⁣ ⁣4653\!\cdots\!46T4 T^{4} - 16 ⁣ ⁣9216\!\cdots\!92p9T5+1186786818878504p18T621746604p27T7+p36T8 p^{9} T^{5} + 1186786818878504 p^{18} T^{6} - 21746604 p^{27} T^{7} + p^{36} T^{8}
43C2S4C_2 \wr S_4 129340146T+832121839762849T2 1 - 29340146 T + 832121839762849 T^{2} - 34 ⁣ ⁣0234\!\cdots\!02T3+ T^{3} + 42 ⁣ ⁣9642\!\cdots\!96T4 T^{4} - 34 ⁣ ⁣0234\!\cdots\!02p9T5+832121839762849p18T629340146p27T7+p36T8 p^{9} T^{5} + 832121839762849 p^{18} T^{6} - 29340146 p^{27} T^{7} + p^{36} T^{8}
47C2S4C_2 \wr S_4 155694460T+4982664211181132T2 1 - 55694460 T + 4982664211181132 T^{2} - 17 ⁣ ⁣5217\!\cdots\!52T3+ T^{3} + 85 ⁣ ⁣2285\!\cdots\!22T4 T^{4} - 17 ⁣ ⁣5217\!\cdots\!52p9T5+4982664211181132p18T655694460p27T7+p36T8 p^{9} T^{5} + 4982664211181132 p^{18} T^{6} - 55694460 p^{27} T^{7} + p^{36} T^{8}
53C2S4C_2 \wr S_4 1+92597676T+13858937600281223T2+ 1 + 92597676 T + 13858937600281223 T^{2} + 85 ⁣ ⁣6085\!\cdots\!60T3+ T^{3} + 69 ⁣ ⁣3669\!\cdots\!36T4+ T^{4} + 85 ⁣ ⁣6085\!\cdots\!60p9T5+13858937600281223p18T6+92597676p27T7+p36T8 p^{9} T^{5} + 13858937600281223 p^{18} T^{6} + 92597676 p^{27} T^{7} + p^{36} T^{8}
59C2S4C_2 \wr S_4 1+125014946T+31884512686538997T2+ 1 + 125014946 T + 31884512686538997 T^{2} + 28 ⁣ ⁣5828\!\cdots\!58T3+ T^{3} + 40 ⁣ ⁣6040\!\cdots\!60T4+ T^{4} + 28 ⁣ ⁣5828\!\cdots\!58p9T5+31884512686538997p18T6+125014946p27T7+p36T8 p^{9} T^{5} + 31884512686538997 p^{18} T^{6} + 125014946 p^{27} T^{7} + p^{36} T^{8}
61C2S4C_2 \wr S_4 1225715700T+23178682814505668T2+ 1 - 225715700 T + 23178682814505668 T^{2} + 44 ⁣ ⁣2844\!\cdots\!28T3 T^{3} - 21 ⁣ ⁣9421\!\cdots\!94T4+ T^{4} + 44 ⁣ ⁣2844\!\cdots\!28p9T5+23178682814505668p18T6225715700p27T7+p36T8 p^{9} T^{5} + 23178682814505668 p^{18} T^{6} - 225715700 p^{27} T^{7} + p^{36} T^{8}
67C2S4C_2 \wr S_4 1+78966102T+31452864298510481T2+ 1 + 78966102 T + 31452864298510481 T^{2} + 23 ⁣ ⁣0223\!\cdots\!02T3+ T^{3} + 10 ⁣ ⁣6410\!\cdots\!64T4+ T^{4} + 23 ⁣ ⁣0223\!\cdots\!02p9T5+31452864298510481p18T6+78966102p27T7+p36T8 p^{9} T^{5} + 31452864298510481 p^{18} T^{6} + 78966102 p^{27} T^{7} + p^{36} T^{8}
71C2S4C_2 \wr S_4 1593356924T+298248152852143644T2 1 - 593356924 T + 298248152852143644 T^{2} - 90 ⁣ ⁣5690\!\cdots\!56T3+ T^{3} + 23 ⁣ ⁣5023\!\cdots\!50T4 T^{4} - 90 ⁣ ⁣5690\!\cdots\!56p9T5+298248152852143644p18T6593356924p27T7+p36T8 p^{9} T^{5} + 298248152852143644 p^{18} T^{6} - 593356924 p^{27} T^{7} + p^{36} T^{8}
73C2S4C_2 \wr S_4 1+77243046T+140353838980856297T2+ 1 + 77243046 T + 140353838980856297 T^{2} + 80 ⁣ ⁣9480\!\cdots\!94T3+ T^{3} + 10 ⁣ ⁣8410\!\cdots\!84T4+ T^{4} + 80 ⁣ ⁣9480\!\cdots\!94p9T5+140353838980856297p18T6+77243046p27T7+p36T8 p^{9} T^{5} + 140353838980856297 p^{18} T^{6} + 77243046 p^{27} T^{7} + p^{36} T^{8}
79C2S4C_2 \wr S_4 11606897150T+1269099511878766832T2 1 - 1606897150 T + 1269099511878766832 T^{2} - 65 ⁣ ⁣2465\!\cdots\!24T3+ T^{3} + 25 ⁣ ⁣8125\!\cdots\!81T4 T^{4} - 65 ⁣ ⁣2465\!\cdots\!24p9T5+1269099511878766832p18T61606897150p27T7+p36T8 p^{9} T^{5} + 1269099511878766832 p^{18} T^{6} - 1606897150 p^{27} T^{7} + p^{36} T^{8}
83C2S4C_2 \wr S_4 1+139772254T+283185185716920849T2 1 + 139772254 T + 283185185716920849 T^{2} - 18 ⁣ ⁣6218\!\cdots\!62T3+ T^{3} + 59 ⁣ ⁣7659\!\cdots\!76T4 T^{4} - 18 ⁣ ⁣6218\!\cdots\!62p9T5+283185185716920849p18T6+139772254p27T7+p36T8 p^{9} T^{5} + 283185185716920849 p^{18} T^{6} + 139772254 p^{27} T^{7} + p^{36} T^{8}
89C2S4C_2 \wr S_4 1+486711072T24973519342723456T2+ 1 + 486711072 T - 24973519342723456 T^{2} + 18 ⁣ ⁣4818\!\cdots\!48T3+ T^{3} + 20 ⁣ ⁣7020\!\cdots\!70T4+ T^{4} + 18 ⁣ ⁣4818\!\cdots\!48p9T524973519342723456p18T6+486711072p27T7+p36T8 p^{9} T^{5} - 24973519342723456 p^{18} T^{6} + 486711072 p^{27} T^{7} + p^{36} T^{8}
97C2S4C_2 \wr S_4 1+340104618T+2099709298554288137T2+ 1 + 340104618 T + 2099709298554288137 T^{2} + 87 ⁣ ⁣1087\!\cdots\!10T3+ T^{3} + 21 ⁣ ⁣1621\!\cdots\!16T4+ T^{4} + 87 ⁣ ⁣1087\!\cdots\!10p9T5+2099709298554288137p18T6+340104618p27T7+p36T8 p^{9} T^{5} + 2099709298554288137 p^{18} T^{6} + 340104618 p^{27} T^{7} + p^{36} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.94017425360566360281402984528, −6.45190351868408098903623900790, −6.35604245494728757787542705816, −6.27763127985860891538623945155, −6.01213231260268306673634652770, −5.39303196153791060911023122992, −5.38957014199283157363984513816, −4.95686461251636822980101094130, −4.91091390169688629060511202168, −4.28189692185758705110792317868, −4.16304439258929015694739961445, −4.00752904129962956626172186622, −3.93135120247729492356233948548, −3.36129166924869027404852136686, −3.29240088098575148095304837669, −3.05748869378049314516776822943, −2.90921858971722206182053117578, −2.22794409189828988586016398035, −2.22079947640988946590265192504, −2.19431627710829711346251485378, −1.71163840433361924593654158467, −1.35714310660037321552276362481, −0.977324884859979393526305751610, −0.78088814314790466051835443501, −0.59358615937891549903064233879, 0.59358615937891549903064233879, 0.78088814314790466051835443501, 0.977324884859979393526305751610, 1.35714310660037321552276362481, 1.71163840433361924593654158467, 2.19431627710829711346251485378, 2.22079947640988946590265192504, 2.22794409189828988586016398035, 2.90921858971722206182053117578, 3.05748869378049314516776822943, 3.29240088098575148095304837669, 3.36129166924869027404852136686, 3.93135120247729492356233948548, 4.00752904129962956626172186622, 4.16304439258929015694739961445, 4.28189692185758705110792317868, 4.91091390169688629060511202168, 4.95686461251636822980101094130, 5.38957014199283157363984513816, 5.39303196153791060911023122992, 6.01213231260268306673634652770, 6.27763127985860891538623945155, 6.35604245494728757787542705816, 6.45190351868408098903623900790, 6.94017425360566360281402984528

Graph of the ZZ-function along the critical line