L(s) = 1 | + 64·2-s + 324·3-s + 2.56e3·4-s + 88·5-s + 2.07e4·6-s + 8.19e4·8-s + 6.56e4·9-s + 5.63e3·10-s + 4.21e4·11-s + 8.29e5·12-s + 5.25e4·13-s + 2.85e4·15-s + 2.29e6·16-s + 2.28e5·17-s + 4.19e6·18-s + 2.05e5·19-s + 2.25e5·20-s + 2.70e6·22-s + 1.84e5·23-s + 2.65e7·24-s − 2.18e6·25-s + 3.36e6·26-s + 1.06e7·27-s + 6.65e6·29-s + 1.82e6·30-s − 8.02e5·31-s + 5.87e7·32-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 2.30·3-s + 5·4-s + 0.0629·5-s + 6.53·6-s + 7.07·8-s + 10/3·9-s + 0.178·10-s + 0.868·11-s + 11.5·12-s + 0.510·13-s + 0.145·15-s + 35/4·16-s + 0.664·17-s + 9.42·18-s + 0.361·19-s + 0.314·20-s + 2.45·22-s + 0.137·23-s + 16.3·24-s − 1.11·25-s + 1.44·26-s + 3.84·27-s + 1.74·29-s + 0.411·30-s − 0.156·31-s + 9.89·32-s + ⋯ |
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s)4L(s)Λ(10−s)
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s+9/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅78
|
Sign: |
1
|
Analytic conductor: |
5.25701×108 |
Root analytic conductor: |
12.3053 |
Motivic weight: |
9 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅78, ( :9/2,9/2,9/2,9/2), 1)
|
Particular Values
L(5) |
≈ |
507.2636408 |
L(21) |
≈ |
507.2636408 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−p4T)4 |
| 3 | C1 | (1−p4T)4 |
| 7 | | 1 |
good | 5 | C2≀S4 | 1−88T+2193651T2+15386124p3T3+195424108984p2T4+15386124p12T5+2193651p18T6−88p27T7+p36T8 |
| 11 | C2≀S4 | 1−42190T+3046779249T2−226567259465370T3+9929645667110327656T4−226567259465370p9T5+3046779249p18T6−42190p27T7+p36T8 |
| 13 | C2≀S4 | 1−52586T+7353996437T2−650590694730474T3−76125770069193779056T4−650590694730474p9T5+7353996437p18T6−52586p27T7+p36T8 |
| 17 | C2≀S4 | 1−228860T+278671046052T2−49970150445514548T3+39⋯82T4−49970150445514548p9T5+278671046052p18T6−228860p27T7+p36T8 |
| 19 | C2≀S4 | 1−205294T+927092798821T2−143725360734961162T3+41⋯20T4−143725360734961162p9T5+927092798821p18T6−205294p27T7+p36T8 |
| 23 | C2≀S4 | 1−184060T+5755764671196T2−471086641801709292T3+14⋯50T4−471086641801709292p9T5+5755764671196p18T6−184060p27T7+p36T8 |
| 29 | C2≀S4 | 1−6655460T+44931713744991T2−19⋯20T3+88⋯36T4−19⋯20p9T5+44931713744991p18T6−6655460p27T7+p36T8 |
| 31 | C2≀S4 | 1+802378T−3054104118688T2+36173940244272897624T3+39⋯25T4+36173940244272897624p9T5−3054104118688p18T6+802378p27T7+p36T8 |
| 37 | C2≀S4 | 1+3681622T+119556972955261T2−60⋯54T3−25⋯04T4−60⋯54p9T5+119556972955261p18T6+3681622p27T7+p36T8 |
| 41 | C2≀S4 | 1−21746604T+1186786818878504T2−16⋯92T3+53⋯46T4−16⋯92p9T5+1186786818878504p18T6−21746604p27T7+p36T8 |
| 43 | C2≀S4 | 1−29340146T+832121839762849T2−34⋯02T3+42⋯96T4−34⋯02p9T5+832121839762849p18T6−29340146p27T7+p36T8 |
| 47 | C2≀S4 | 1−55694460T+4982664211181132T2−17⋯52T3+85⋯22T4−17⋯52p9T5+4982664211181132p18T6−55694460p27T7+p36T8 |
| 53 | C2≀S4 | 1+92597676T+13858937600281223T2+85⋯60T3+69⋯36T4+85⋯60p9T5+13858937600281223p18T6+92597676p27T7+p36T8 |
| 59 | C2≀S4 | 1+125014946T+31884512686538997T2+28⋯58T3+40⋯60T4+28⋯58p9T5+31884512686538997p18T6+125014946p27T7+p36T8 |
| 61 | C2≀S4 | 1−225715700T+23178682814505668T2+44⋯28T3−21⋯94T4+44⋯28p9T5+23178682814505668p18T6−225715700p27T7+p36T8 |
| 67 | C2≀S4 | 1+78966102T+31452864298510481T2+23⋯02T3+10⋯64T4+23⋯02p9T5+31452864298510481p18T6+78966102p27T7+p36T8 |
| 71 | C2≀S4 | 1−593356924T+298248152852143644T2−90⋯56T3+23⋯50T4−90⋯56p9T5+298248152852143644p18T6−593356924p27T7+p36T8 |
| 73 | C2≀S4 | 1+77243046T+140353838980856297T2+80⋯94T3+10⋯84T4+80⋯94p9T5+140353838980856297p18T6+77243046p27T7+p36T8 |
| 79 | C2≀S4 | 1−1606897150T+1269099511878766832T2−65⋯24T3+25⋯81T4−65⋯24p9T5+1269099511878766832p18T6−1606897150p27T7+p36T8 |
| 83 | C2≀S4 | 1+139772254T+283185185716920849T2−18⋯62T3+59⋯76T4−18⋯62p9T5+283185185716920849p18T6+139772254p27T7+p36T8 |
| 89 | C2≀S4 | 1+486711072T−24973519342723456T2+18⋯48T3+20⋯70T4+18⋯48p9T5−24973519342723456p18T6+486711072p27T7+p36T8 |
| 97 | C2≀S4 | 1+340104618T+2099709298554288137T2+87⋯10T3+21⋯16T4+87⋯10p9T5+2099709298554288137p18T6+340104618p27T7+p36T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.94017425360566360281402984528, −6.45190351868408098903623900790, −6.35604245494728757787542705816, −6.27763127985860891538623945155, −6.01213231260268306673634652770, −5.39303196153791060911023122992, −5.38957014199283157363984513816, −4.95686461251636822980101094130, −4.91091390169688629060511202168, −4.28189692185758705110792317868, −4.16304439258929015694739961445, −4.00752904129962956626172186622, −3.93135120247729492356233948548, −3.36129166924869027404852136686, −3.29240088098575148095304837669, −3.05748869378049314516776822943, −2.90921858971722206182053117578, −2.22794409189828988586016398035, −2.22079947640988946590265192504, −2.19431627710829711346251485378, −1.71163840433361924593654158467, −1.35714310660037321552276362481, −0.977324884859979393526305751610, −0.78088814314790466051835443501, −0.59358615937891549903064233879,
0.59358615937891549903064233879, 0.78088814314790466051835443501, 0.977324884859979393526305751610, 1.35714310660037321552276362481, 1.71163840433361924593654158467, 2.19431627710829711346251485378, 2.22079947640988946590265192504, 2.22794409189828988586016398035, 2.90921858971722206182053117578, 3.05748869378049314516776822943, 3.29240088098575148095304837669, 3.36129166924869027404852136686, 3.93135120247729492356233948548, 4.00752904129962956626172186622, 4.16304439258929015694739961445, 4.28189692185758705110792317868, 4.91091390169688629060511202168, 4.95686461251636822980101094130, 5.38957014199283157363984513816, 5.39303196153791060911023122992, 6.01213231260268306673634652770, 6.27763127985860891538623945155, 6.35604245494728757787542705816, 6.45190351868408098903623900790, 6.94017425360566360281402984528