L(s) = 1 | − 6·3-s + 12·5-s + 10·7-s + 21·9-s + 12·11-s − 72·15-s − 48·17-s + 42·19-s − 60·21-s − 24·23-s + 58·25-s − 54·27-s − 102·31-s − 72·33-s + 120·35-s + 22·37-s − 28·43-s + 252·45-s + 132·47-s + 49·49-s + 288·51-s + 120·53-s + 144·55-s − 252·57-s + 24·59-s − 72·61-s + 210·63-s + ⋯ |
L(s) = 1 | − 2·3-s + 12/5·5-s + 10/7·7-s + 7/3·9-s + 1.09·11-s − 4.79·15-s − 2.82·17-s + 2.21·19-s − 2.85·21-s − 1.04·23-s + 2.31·25-s − 2·27-s − 3.29·31-s − 2.18·33-s + 24/7·35-s + 0.594·37-s − 0.651·43-s + 28/5·45-s + 2.80·47-s + 49-s + 5.64·51-s + 2.26·53-s + 2.61·55-s − 4.42·57-s + 0.406·59-s − 1.18·61-s + 10/3·63-s + ⋯ |
Λ(s)=(=((216⋅34⋅74)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅34⋅74)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
7025.82 |
Root analytic conductor: |
3.02577 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅34⋅74, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
1.598551051 |
L(21) |
≈ |
1.598551051 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+pT+pT2)2 |
| 7 | C22 | 1−10T+51T2−10p2T3+p4T4 |
good | 5 | D4×C2 | 1−12T+86T2−456T3+2019T4−456p2T5+86p4T6−12p6T7+p8T8 |
| 11 | C22 | (1−6T−85T2−6p2T3+p4T4)2 |
| 13 | D4×C2 | 1+98T2+54915T4+98p4T6+p8T8 |
| 17 | D4×C2 | 1+48T+1514T2+35808T3+694947T4+35808p2T5+1514p4T6+48p6T7+p8T8 |
| 19 | D4×C2 | 1−42T+1433T2−35490T3+795972T4−35490p2T5+1433p4T6−42p6T7+p8T8 |
| 23 | D4×C2 | 1+24T+22T2−12096T3−277629T4−12096p2T5+22p4T6+24p6T7+p8T8 |
| 29 | C22 | (1+530T2+p4T4)2 |
| 31 | D4×C2 | 1+102T+6041T2+8466pT3+9396p2T4+8466p3T5+6041p4T6+102p6T7+p8T8 |
| 37 | D4×C2 | 1−22T−2087T2+3674T3+4073284T4+3674p2T5−2087p4T6−22p6T7+p8T8 |
| 41 | D4×C2 | 1−2476T2+6405414T4−2476p4T6+p8T8 |
| 43 | D4 | (1+14T+3675T2+14p2T3+p4T4)2 |
| 47 | D4×C2 | 1−132T+11654T2−771672T3+42125907T4−771672p2T5+11654p4T6−132p6T7+p8T8 |
| 53 | D4×C2 | 1−120T+110pT2−354240T3+25104819T4−354240p2T5+110p5T6−120p6T7+p8T8 |
| 59 | D4×C2 | 1−24T+6026T2−140016T3+22586547T4−140016p2T5+6026p4T6−24p6T7+p8T8 |
| 61 | D4×C2 | 1+72T+9218T2+539280T3+48684147T4+539280p2T5+9218p4T6+72p6T7+p8T8 |
| 67 | D4×C2 | 1+110T+3625T2−55330T3−2642396T4−55330p2T5+3625p4T6+110p6T7+p8T8 |
| 71 | D4 | (1+156T+178pT2+156p2T3+p4T4)2 |
| 73 | D4×C2 | 1+66T+2873T2+93786T3−18641292T4+93786p2T5+2873p4T6+66p6T7+p8T8 |
| 79 | D4×C2 | 1−10T−3695T2+86870T3−25172156T4+86870p2T5−3695p4T6−10p6T7+p8T8 |
| 83 | D4×C2 | 1−116pT2+107694438T4−116p5T6+p8T8 |
| 89 | C22 | (1+36T+8353T2+36p2T3+p4T4)2 |
| 97 | D4×C2 | 1−36580T2+511416774T4−36580p4T6+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.151835481077152472907957382424, −7.65419972440289389774311525835, −7.48418616250043892695894158533, −7.25289639055717817922697493637, −7.14497368805639321203491959667, −6.90785231855669327180410414564, −6.42123671748674941584836250427, −6.22123382742639049479108146886, −5.92285178242963670527150351303, −5.83396232702134959754649287498, −5.59350061630147971114709242051, −5.35241684172126701457131833665, −5.29085586208094683692011100207, −4.58708171728656882885678640825, −4.54094877279726719753516454754, −4.39094462496383554117165315713, −3.82836960282743377088542992836, −3.68878024531006319202674696792, −2.89814070708283217346319003471, −2.35070845570825123393360283764, −2.24475340385583045637862320816, −1.65233983664443142631883754336, −1.49375913020863040215864666091, −1.23213891163193174025746937530, −0.30694248599785445817418134248,
0.30694248599785445817418134248, 1.23213891163193174025746937530, 1.49375913020863040215864666091, 1.65233983664443142631883754336, 2.24475340385583045637862320816, 2.35070845570825123393360283764, 2.89814070708283217346319003471, 3.68878024531006319202674696792, 3.82836960282743377088542992836, 4.39094462496383554117165315713, 4.54094877279726719753516454754, 4.58708171728656882885678640825, 5.29085586208094683692011100207, 5.35241684172126701457131833665, 5.59350061630147971114709242051, 5.83396232702134959754649287498, 5.92285178242963670527150351303, 6.22123382742639049479108146886, 6.42123671748674941584836250427, 6.90785231855669327180410414564, 7.14497368805639321203491959667, 7.25289639055717817922697493637, 7.48418616250043892695894158533, 7.65419972440289389774311525835, 8.151835481077152472907957382424