L(s) = 1 | − 46·9-s − 500·25-s + 1.37e3·49-s + 1.72e3·73-s + 1.38e3·81-s − 7.64e3·97-s + 4.67e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8.78e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2.30e4·225-s + ⋯ |
L(s) = 1 | − 1.70·9-s − 4·25-s + 4·49-s + 2.75·73-s + 1.90·81-s − 7.99·97-s + 3.51·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 4·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + 6.81·225-s + ⋯ |
Λ(s)=(=((228⋅34)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((228⋅34)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅34
|
Sign: |
1
|
Analytic conductor: |
263505. |
Root analytic conductor: |
4.75990 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅34, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.7753072451 |
L(21) |
≈ |
0.7753072451 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+46T2+p6T4 |
good | 5 | C2 | (1+p3T2)4 |
| 7 | C2 | (1−p3T2)4 |
| 11 | C22 | (1−2338T2+p6T4)2 |
| 13 | C2 | (1−p3T2)4 |
| 17 | C2 | (1−90T+p3T2)2(1+90T+p3T2)2 |
| 19 | C22 | (1−2482T2+p6T4)2 |
| 23 | C2 | (1+p3T2)4 |
| 29 | C2 | (1+p3T2)4 |
| 31 | C2 | (1−p3T2)4 |
| 37 | C2 | (1−p3T2)4 |
| 41 | C2 | (1−522T+p3T2)2(1+522T+p3T2)2 |
| 43 | C22 | (1−74914T2+p6T4)2 |
| 47 | C2 | (1+p3T2)4 |
| 53 | C2 | (1+p3T2)4 |
| 59 | C22 | (1+304958T2+p6T4)2 |
| 61 | C2 | (1−p3T2)4 |
| 67 | C22 | (1−596626T2+p6T4)2 |
| 71 | C2 | (1+p3T2)4 |
| 73 | C2 | (1−430T+p3T2)4 |
| 79 | C2 | (1−p3T2)4 |
| 83 | C22 | (1+678926T2+p6T4)2 |
| 89 | C2 | (1−1026T+p3T2)2(1+1026T+p3T2)2 |
| 97 | C2 | (1+1910T+p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.933727857767893288667867694332, −7.50513498166158157610022203528, −7.28865293552701875292825605761, −7.09107231736497162640078807037, −6.77005270257119978712905172653, −6.48448745771862606971275288422, −6.16634286078935731291759537324, −5.77824610563574928417970298036, −5.72773760055005578529838852379, −5.58079139905286779157066356359, −5.36909914044477821358717535262, −5.06102458415549858583442647704, −4.39714878560795207867375465301, −4.32560239626575882758833640778, −3.87032060020497671754576868261, −3.84021682710577073892891907720, −3.51666678436270297953652596006, −2.90019593020829020969599279552, −2.77506563244789333450532936977, −2.35459173960219017974957033223, −2.05384414727084546337938854870, −1.79593205692884855498555751140, −1.12219058602106780854641354648, −0.61095474250302536327077017672, −0.18303542954187130978219015007,
0.18303542954187130978219015007, 0.61095474250302536327077017672, 1.12219058602106780854641354648, 1.79593205692884855498555751140, 2.05384414727084546337938854870, 2.35459173960219017974957033223, 2.77506563244789333450532936977, 2.90019593020829020969599279552, 3.51666678436270297953652596006, 3.84021682710577073892891907720, 3.87032060020497671754576868261, 4.32560239626575882758833640778, 4.39714878560795207867375465301, 5.06102458415549858583442647704, 5.36909914044477821358717535262, 5.58079139905286779157066356359, 5.72773760055005578529838852379, 5.77824610563574928417970298036, 6.16634286078935731291759537324, 6.48448745771862606971275288422, 6.77005270257119978712905172653, 7.09107231736497162640078807037, 7.28865293552701875292825605761, 7.50513498166158157610022203528, 7.933727857767893288667867694332