L(s) = 1 | − 3·4-s + 41·16-s + 216·17-s + 120·23-s − 228·25-s + 48·29-s − 1.06e3·43-s − 328·49-s + 864·53-s − 2.28e3·61-s − 411·64-s − 648·68-s + 288·79-s − 360·92-s + 684·100-s + 528·101-s + 3.24e3·107-s − 1.41e3·113-s − 144·116-s − 4.89e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 3/8·4-s + 0.640·16-s + 3.08·17-s + 1.08·23-s − 1.82·25-s + 0.307·29-s − 3.77·43-s − 0.956·49-s + 2.23·53-s − 4.78·61-s − 0.802·64-s − 1.15·68-s + 0.410·79-s − 0.407·92-s + 0.683·100-s + 0.520·101-s + 2.92·107-s − 1.17·113-s − 0.115·116-s − 3.67·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + ⋯ |
Λ(s)=(=((38⋅138)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((38⋅138)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅138
|
Sign: |
1
|
Analytic conductor: |
6.48606×107 |
Root analytic conductor: |
9.47322 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 38⋅138, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.9864211708 |
L(21) |
≈ |
0.9864211708 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 13 | | 1 |
good | 2 | D4×C2 | 1+3T2−p5T4+3p6T6+p12T8 |
| 5 | C22≀C2 | 1+228T2+33862T4+228p6T6+p12T8 |
| 7 | C22≀C2 | 1+328T2+51918T4+328p6T6+p12T8 |
| 11 | C22≀C2 | 1+4896T2+9533230T4+4896p6T6+p12T8 |
| 17 | C2 | (1−54T+p3T2)4 |
| 19 | C22≀C2 | 1+15880T2+155242878T4+15880p6T6+p12T8 |
| 23 | D4 | (1−60T+1870T2−60p3T3+p6T4)2 |
| 29 | D4 | (1−24T+25558T2−24p3T3+p6T4)2 |
| 31 | C22≀C2 | 1+102136T2+4357504590T4+102136p6T6+p12T8 |
| 37 | C22≀C2 | 1+2164T2−2618990922T4+2164p6T6+p12T8 |
| 41 | C22≀C2 | 1+230292T2+22372016182T4+230292p6T6+p12T8 |
| 43 | D4 | (1+532T+206406T2+532p3T3+p6T4)2 |
| 47 | C22≀C2 | 1−85056T2+23167872958T4−85056p6T6+p12T8 |
| 53 | D4 | (1−432T+134134T2−432p3T3+p6T4)2 |
| 59 | C22≀C2 | 1+716592T2+212420895502T4+716592p6T6+p12T8 |
| 61 | D4 | (1+1140T+12598pT2+1140p3T3+p6T4)2 |
| 67 | C22≀C2 | 1+475384T2+105182398878T4+475384p6T6+p12T8 |
| 71 | C22≀C2 | 1+1283952T2+666179277502T4+1283952p6T6+p12T8 |
| 73 | C22≀C2 | 1+762916T2+359882924838T4+762916p6T6+p12T8 |
| 79 | D4 | (1−144T+825118T2−144p3T3+p6T4)2 |
| 83 | C22≀C2 | 1+1633872T2+191792062p2T4+1633872p6T6+p12T8 |
| 89 | C22≀C2 | 1+2759412T2+2896886558902T4+2759412p6T6+p12T8 |
| 97 | C22≀C2 | 1−53564T2+1619815156998T4−53564p6T6+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.37930659496544574397705670879, −6.29721064039630347016816338798, −5.75838264734123836280183254451, −5.70776736150244280323402271041, −5.50181541502453252223599188487, −5.33535249208491691802886796430, −5.08633098353777881636386391772, −4.79053798433035189212045160954, −4.76605052051313146434766120682, −4.33345728255767385996132094379, −4.11462068124171021169062391522, −3.91861308170087015614107261167, −3.42519848662332914634031728735, −3.34162545487194498416355188288, −3.23048150081354990052309841992, −3.10532885501930015910677477839, −2.81039842989896806071099652258, −2.30695114666928373366558088683, −1.93389277118341985675288936185, −1.67920503356369532511487561673, −1.51764927910245479210637360112, −1.20828584253536194609831584715, −0.864712926976473255208328020719, −0.56706627024054596407793270340, −0.11453834143139711145686727803,
0.11453834143139711145686727803, 0.56706627024054596407793270340, 0.864712926976473255208328020719, 1.20828584253536194609831584715, 1.51764927910245479210637360112, 1.67920503356369532511487561673, 1.93389277118341985675288936185, 2.30695114666928373366558088683, 2.81039842989896806071099652258, 3.10532885501930015910677477839, 3.23048150081354990052309841992, 3.34162545487194498416355188288, 3.42519848662332914634031728735, 3.91861308170087015614107261167, 4.11462068124171021169062391522, 4.33345728255767385996132094379, 4.76605052051313146434766120682, 4.79053798433035189212045160954, 5.08633098353777881636386391772, 5.33535249208491691802886796430, 5.50181541502453252223599188487, 5.70776736150244280323402271041, 5.75838264734123836280183254451, 6.29721064039630347016816338798, 6.37930659496544574397705670879