Dirichlet series
L(s) = 1 | + 897·2-s − 4.37e6·4-s − 3.90e7·5-s − 2.34e8·7-s − 4.81e9·8-s − 3.50e10·10-s − 3.14e10·11-s − 2.70e10·13-s − 2.10e11·14-s + 6.70e12·16-s + 2.94e12·17-s − 2.42e13·19-s + 1.70e14·20-s − 2.82e13·22-s − 1.03e13·23-s + 9.53e14·25-s − 2.42e13·26-s + 1.02e15·28-s − 4.72e15·29-s − 1.09e15·31-s + 8.96e15·32-s + 2.64e15·34-s + 9.16e15·35-s + 4.81e15·37-s − 2.17e16·38-s + 1.88e17·40-s − 2.89e17·41-s + ⋯ |
L(s) = 1 | + 0.619·2-s − 2.08·4-s − 1.78·5-s − 0.313·7-s − 1.58·8-s − 1.10·10-s − 0.366·11-s − 0.0543·13-s − 0.194·14-s + 1.52·16-s + 0.354·17-s − 0.908·19-s + 3.73·20-s − 0.226·22-s − 0.0520·23-s + 2·25-s − 0.0336·26-s + 0.654·28-s − 2.08·29-s − 0.239·31-s + 1.40·32-s + 0.219·34-s + 0.561·35-s + 0.164·37-s − 0.562·38-s + 2.83·40-s − 3.37·41-s + ⋯ |
Functional equation
Invariants
Degree: | \(8\) |
Conductor: | \(4100625\) = \(3^{8} \cdot 5^{4}\) |
Sign: | $1$ |
Analytic conductor: | \(2.50170\times 10^{8}\) |
Root analytic conductor: | \(11.2144\) |
Motivic weight: | \(21\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((8,\ 4100625,\ (\ :21/2, 21/2, 21/2, 21/2),\ 1)\) |
Particular Values
\(L(11)\) | \(\approx\) | \(0.01920876667\) |
\(L(\frac12)\) | \(\approx\) | \(0.01920876667\) |
\(L(\frac{23}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 3 | \( 1 \) | |
5 | $C_1$ | \( ( 1 + p^{10} T )^{4} \) | |
good | 2 | $C_2 \wr S_4$ | \( 1 - 897 T + 2589085 p T^{2} - 117236669 p^{5} T^{3} + 14637391839 p^{10} T^{4} - 117236669 p^{26} T^{5} + 2589085 p^{43} T^{6} - 897 p^{63} T^{7} + p^{84} T^{8} \) |
7 | $C_2 \wr S_4$ | \( 1 + 4787296 p^{2} T + 7592135803176028 p^{2} T^{2} - \)\(13\!\cdots\!36\)\( p^{4} T^{3} + \)\(73\!\cdots\!10\)\( p^{4} T^{4} - \)\(13\!\cdots\!36\)\( p^{25} T^{5} + 7592135803176028 p^{44} T^{6} + 4787296 p^{65} T^{7} + p^{84} T^{8} \) | |
11 | $C_2 \wr S_4$ | \( 1 + 31491830256 T + \)\(93\!\cdots\!92\)\( p T^{2} + \)\(46\!\cdots\!00\)\( p^{2} T^{3} + \)\(53\!\cdots\!06\)\( p^{3} T^{4} + \)\(46\!\cdots\!00\)\( p^{23} T^{5} + \)\(93\!\cdots\!92\)\( p^{43} T^{6} + 31491830256 p^{63} T^{7} + p^{84} T^{8} \) | |
13 | $C_2 \wr S_4$ | \( 1 + 27017977768 T - \)\(92\!\cdots\!72\)\( p T^{2} + \)\(33\!\cdots\!24\)\( p^{2} T^{3} + \)\(39\!\cdots\!30\)\( p^{3} T^{4} + \)\(33\!\cdots\!24\)\( p^{23} T^{5} - \)\(92\!\cdots\!72\)\( p^{43} T^{6} + 27017977768 p^{63} T^{7} + p^{84} T^{8} \) | |
17 | $C_2 \wr S_4$ | \( 1 - 2946095028888 T + \)\(67\!\cdots\!16\)\( p T^{2} - \)\(25\!\cdots\!20\)\( p^{2} T^{3} + \)\(19\!\cdots\!02\)\( p^{3} T^{4} - \)\(25\!\cdots\!20\)\( p^{23} T^{5} + \)\(67\!\cdots\!16\)\( p^{43} T^{6} - 2946095028888 p^{63} T^{7} + p^{84} T^{8} \) | |
19 | $C_2 \wr S_4$ | \( 1 + 24270353300752 T + \)\(48\!\cdots\!92\)\( p^{2} T^{2} + \)\(36\!\cdots\!36\)\( p^{3} T^{3} + \)\(21\!\cdots\!26\)\( p^{3} T^{4} + \)\(36\!\cdots\!36\)\( p^{24} T^{5} + \)\(48\!\cdots\!92\)\( p^{44} T^{6} + 24270353300752 p^{63} T^{7} + p^{84} T^{8} \) | |
23 | $C_2 \wr S_4$ | \( 1 + 10350924920928 T + \)\(70\!\cdots\!08\)\( T^{2} + \)\(70\!\cdots\!12\)\( T^{3} + \)\(23\!\cdots\!10\)\( T^{4} + \)\(70\!\cdots\!12\)\( p^{21} T^{5} + \)\(70\!\cdots\!08\)\( p^{42} T^{6} + 10350924920928 p^{63} T^{7} + p^{84} T^{8} \) | |
29 | $C_2 \wr S_4$ | \( 1 + 4728924677079096 T + \)\(11\!\cdots\!00\)\( T^{2} + \)\(17\!\cdots\!92\)\( T^{3} + \)\(17\!\cdots\!18\)\( T^{4} + \)\(17\!\cdots\!92\)\( p^{21} T^{5} + \)\(11\!\cdots\!00\)\( p^{42} T^{6} + 4728924677079096 p^{63} T^{7} + p^{84} T^{8} \) | |
31 | $C_2 \wr S_4$ | \( 1 + 1094923910405536 T + \)\(68\!\cdots\!48\)\( T^{2} + \)\(44\!\cdots\!48\)\( T^{3} + \)\(19\!\cdots\!54\)\( T^{4} + \)\(44\!\cdots\!48\)\( p^{21} T^{5} + \)\(68\!\cdots\!48\)\( p^{42} T^{6} + 1094923910405536 p^{63} T^{7} + p^{84} T^{8} \) | |
37 | $C_2 \wr S_4$ | \( 1 - 4813435696247096 T + \)\(17\!\cdots\!12\)\( T^{2} - \)\(33\!\cdots\!36\)\( T^{3} + \)\(15\!\cdots\!50\)\( T^{4} - \)\(33\!\cdots\!36\)\( p^{21} T^{5} + \)\(17\!\cdots\!12\)\( p^{42} T^{6} - 4813435696247096 p^{63} T^{7} + p^{84} T^{8} \) | |
41 | $C_2 \wr S_4$ | \( 1 + 289731591445930344 T + \)\(49\!\cdots\!68\)\( T^{2} + \)\(57\!\cdots\!52\)\( T^{3} + \)\(55\!\cdots\!14\)\( T^{4} + \)\(57\!\cdots\!52\)\( p^{21} T^{5} + \)\(49\!\cdots\!68\)\( p^{42} T^{6} + 289731591445930344 p^{63} T^{7} + p^{84} T^{8} \) | |
43 | $C_2 \wr S_4$ | \( 1 - 451091912658458000 T + \)\(13\!\cdots\!00\)\( T^{2} - \)\(27\!\cdots\!00\)\( T^{3} + \)\(44\!\cdots\!98\)\( T^{4} - \)\(27\!\cdots\!00\)\( p^{21} T^{5} + \)\(13\!\cdots\!00\)\( p^{42} T^{6} - 451091912658458000 p^{63} T^{7} + p^{84} T^{8} \) | |
47 | $C_2 \wr S_4$ | \( 1 + 813883435638492480 T + \)\(59\!\cdots\!20\)\( T^{2} + \)\(27\!\cdots\!60\)\( T^{3} + \)\(11\!\cdots\!18\)\( T^{4} + \)\(27\!\cdots\!60\)\( p^{21} T^{5} + \)\(59\!\cdots\!20\)\( p^{42} T^{6} + 813883435638492480 p^{63} T^{7} + p^{84} T^{8} \) | |
53 | $C_2 \wr S_4$ | \( 1 + 697278335404085208 T + \)\(47\!\cdots\!28\)\( T^{2} + \)\(22\!\cdots\!72\)\( T^{3} + \)\(10\!\cdots\!50\)\( T^{4} + \)\(22\!\cdots\!72\)\( p^{21} T^{5} + \)\(47\!\cdots\!28\)\( p^{42} T^{6} + 697278335404085208 p^{63} T^{7} + p^{84} T^{8} \) | |
59 | $C_2 \wr S_4$ | \( 1 + 6622888614569598192 T + \)\(40\!\cdots\!72\)\( T^{2} + \)\(20\!\cdots\!04\)\( T^{3} + \)\(88\!\cdots\!34\)\( T^{4} + \)\(20\!\cdots\!04\)\( p^{21} T^{5} + \)\(40\!\cdots\!72\)\( p^{42} T^{6} + 6622888614569598192 p^{63} T^{7} + p^{84} T^{8} \) | |
61 | $C_2 \wr S_4$ | \( 1 - 7390887218011683320 T + \)\(30\!\cdots\!96\)\( T^{2} - \)\(27\!\cdots\!80\)\( T^{3} + \)\(27\!\cdots\!46\)\( T^{4} - \)\(27\!\cdots\!80\)\( p^{21} T^{5} + \)\(30\!\cdots\!96\)\( p^{42} T^{6} - 7390887218011683320 p^{63} T^{7} + p^{84} T^{8} \) | |
67 | $C_2 \wr S_4$ | \( 1 + 24188188449376788688 T + \)\(66\!\cdots\!72\)\( T^{2} + \)\(12\!\cdots\!80\)\( T^{3} + \)\(22\!\cdots\!26\)\( T^{4} + \)\(12\!\cdots\!80\)\( p^{21} T^{5} + \)\(66\!\cdots\!72\)\( p^{42} T^{6} + 24188188449376788688 p^{63} T^{7} + p^{84} T^{8} \) | |
71 | $C_2 \wr S_4$ | \( 1 - 37390337803999713312 T + \)\(18\!\cdots\!88\)\( T^{2} - \)\(49\!\cdots\!64\)\( T^{3} + \)\(15\!\cdots\!70\)\( T^{4} - \)\(49\!\cdots\!64\)\( p^{21} T^{5} + \)\(18\!\cdots\!88\)\( p^{42} T^{6} - 37390337803999713312 p^{63} T^{7} + p^{84} T^{8} \) | |
73 | $C_2 \wr S_4$ | \( 1 + 37253672904265201432 T + \)\(53\!\cdots\!28\)\( T^{2} + \)\(13\!\cdots\!88\)\( T^{3} + \)\(10\!\cdots\!30\)\( T^{4} + \)\(13\!\cdots\!88\)\( p^{21} T^{5} + \)\(53\!\cdots\!28\)\( p^{42} T^{6} + 37253672904265201432 p^{63} T^{7} + p^{84} T^{8} \) | |
79 | $C_2 \wr S_4$ | \( 1 + \)\(10\!\cdots\!00\)\( T + \)\(20\!\cdots\!16\)\( T^{2} + \)\(13\!\cdots\!00\)\( T^{3} + \)\(17\!\cdots\!46\)\( T^{4} + \)\(13\!\cdots\!00\)\( p^{21} T^{5} + \)\(20\!\cdots\!16\)\( p^{42} T^{6} + \)\(10\!\cdots\!00\)\( p^{63} T^{7} + p^{84} T^{8} \) | |
83 | $C_2 \wr S_4$ | \( 1 - \)\(14\!\cdots\!96\)\( T + \)\(49\!\cdots\!60\)\( T^{2} - \)\(54\!\cdots\!56\)\( T^{3} + \)\(11\!\cdots\!26\)\( T^{4} - \)\(54\!\cdots\!56\)\( p^{21} T^{5} + \)\(49\!\cdots\!60\)\( p^{42} T^{6} - \)\(14\!\cdots\!96\)\( p^{63} T^{7} + p^{84} T^{8} \) | |
89 | $C_2 \wr S_4$ | \( 1 + \)\(55\!\cdots\!48\)\( T + \)\(43\!\cdots\!52\)\( T^{2} + \)\(14\!\cdots\!96\)\( T^{3} + \)\(60\!\cdots\!14\)\( T^{4} + \)\(14\!\cdots\!96\)\( p^{21} T^{5} + \)\(43\!\cdots\!52\)\( p^{42} T^{6} + \)\(55\!\cdots\!48\)\( p^{63} T^{7} + p^{84} T^{8} \) | |
97 | $C_2 \wr S_4$ | \( 1 + \)\(23\!\cdots\!28\)\( T + \)\(13\!\cdots\!32\)\( T^{2} + \)\(61\!\cdots\!20\)\( T^{3} + \)\(80\!\cdots\!66\)\( T^{4} + \)\(61\!\cdots\!20\)\( p^{21} T^{5} + \)\(13\!\cdots\!32\)\( p^{42} T^{6} + \)\(23\!\cdots\!28\)\( p^{63} T^{7} + p^{84} T^{8} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−7.925661808048971603484989154936, −7.47400900377655106709746858276, −7.11931413950061897356061873488, −6.71548747807764158673202294660, −6.69661646011760205096314348576, −6.08379063346739706529498170478, −5.49282207059025500609540872302, −5.48762596346637760272339649288, −5.37802426682904202908343187039, −4.64948348735575554198424198864, −4.55586248848710531257708936492, −4.28034506390677916071463978657, −4.25595363719694055877070508889, −3.83725941632738691745049331827, −3.34414659808914850725861468710, −3.21115415125424645186078196694, −3.20942321412360675521358032589, −2.63281472626392836416860681181, −1.98420057947417468079924546350, −1.67414911027982636189640623942, −1.63762515646515751208863686285, −0.838567829295619169433666960052, −0.50659759460686242462831000900, −0.44074888670186003444212388732, −0.03115564611230382885270971954, 0.03115564611230382885270971954, 0.44074888670186003444212388732, 0.50659759460686242462831000900, 0.838567829295619169433666960052, 1.63762515646515751208863686285, 1.67414911027982636189640623942, 1.98420057947417468079924546350, 2.63281472626392836416860681181, 3.20942321412360675521358032589, 3.21115415125424645186078196694, 3.34414659808914850725861468710, 3.83725941632738691745049331827, 4.25595363719694055877070508889, 4.28034506390677916071463978657, 4.55586248848710531257708936492, 4.64948348735575554198424198864, 5.37802426682904202908343187039, 5.48762596346637760272339649288, 5.49282207059025500609540872302, 6.08379063346739706529498170478, 6.69661646011760205096314348576, 6.71548747807764158673202294660, 7.11931413950061897356061873488, 7.47400900377655106709746858276, 7.925661808048971603484989154936