Properties

Label 8-45e4-1.1-c25e4-0-0
Degree $8$
Conductor $4100625$
Sign $1$
Analytic cond. $1.00836\times 10^{9}$
Root an. cond. $13.3491$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.68e3·2-s − 2.01e7·4-s + 9.76e8·5-s + 2.49e10·7-s + 1.65e11·8-s − 7.50e12·10-s − 9.98e12·11-s − 1.43e14·13-s − 1.91e14·14-s + 1.23e15·16-s − 2.80e15·17-s + 1.50e16·19-s − 1.97e16·20-s + 7.67e16·22-s − 4.87e16·23-s + 5.96e17·25-s + 1.10e18·26-s − 5.02e17·28-s + 3.66e17·29-s + 5.26e18·31-s − 2.14e18·32-s + 2.15e19·34-s + 2.43e19·35-s − 8.25e19·37-s − 1.15e20·38-s + 1.61e20·40-s − 1.16e20·41-s + ⋯
L(s)  = 1  − 1.32·2-s − 0.601·4-s + 1.78·5-s + 0.680·7-s + 0.850·8-s − 2.37·10-s − 0.959·11-s − 1.70·13-s − 0.902·14-s + 1.09·16-s − 1.16·17-s + 1.55·19-s − 1.07·20-s + 1.27·22-s − 0.464·23-s + 2·25-s + 2.26·26-s − 0.409·28-s + 0.192·29-s + 1.20·31-s − 0.328·32-s + 1.54·34-s + 1.21·35-s − 2.06·37-s − 2.06·38-s + 1.52·40-s − 0.804·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4100625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4100625 ^{s/2} \, \Gamma_{\C}(s+25/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(4100625\)    =    \(3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.00836\times 10^{9}\)
Root analytic conductor: \(13.3491\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 4100625,\ (\ :25/2, 25/2, 25/2, 25/2),\ 1)\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - p^{12} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 + 7683 T + 19803275 p^{2} T^{2} + 9350685853 p^{6} T^{3} + 451253267883 p^{13} T^{4} + 9350685853 p^{31} T^{5} + 19803275 p^{52} T^{6} + 7683 p^{75} T^{7} + p^{100} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 508422464 p^{2} T + 53246328028610032828 p^{2} T^{2} - \)\(61\!\cdots\!88\)\( p^{5} T^{3} + \)\(94\!\cdots\!30\)\( p^{9} T^{4} - \)\(61\!\cdots\!88\)\( p^{30} T^{5} + 53246328028610032828 p^{52} T^{6} - 508422464 p^{77} T^{7} + p^{100} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 9989114586816 T + \)\(20\!\cdots\!12\)\( p T^{2} + \)\(67\!\cdots\!60\)\( p^{3} T^{3} + \)\(12\!\cdots\!86\)\( p^{5} T^{4} + \)\(67\!\cdots\!60\)\( p^{28} T^{5} + \)\(20\!\cdots\!12\)\( p^{51} T^{6} + 9989114586816 p^{75} T^{7} + p^{100} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 143366199676168 T + \)\(19\!\cdots\!96\)\( p^{2} T^{2} + \)\(17\!\cdots\!44\)\( p^{2} T^{3} + \)\(16\!\cdots\!10\)\( p^{3} T^{4} + \)\(17\!\cdots\!44\)\( p^{27} T^{5} + \)\(19\!\cdots\!96\)\( p^{52} T^{6} + 143366199676168 p^{75} T^{7} + p^{100} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 2801218397375112 T + \)\(11\!\cdots\!32\)\( T^{2} + \)\(16\!\cdots\!80\)\( p T^{3} + \)\(35\!\cdots\!54\)\( p^{2} T^{4} + \)\(16\!\cdots\!80\)\( p^{26} T^{5} + \)\(11\!\cdots\!32\)\( p^{50} T^{6} + 2801218397375112 p^{75} T^{7} + p^{100} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 15008254302340928 T + \)\(18\!\cdots\!08\)\( p T^{2} - \)\(96\!\cdots\!96\)\( p^{2} T^{3} + \)\(67\!\cdots\!66\)\( p^{3} T^{4} - \)\(96\!\cdots\!96\)\( p^{27} T^{5} + \)\(18\!\cdots\!08\)\( p^{51} T^{6} - 15008254302340928 p^{75} T^{7} + p^{100} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 48788561474090928 T + \)\(10\!\cdots\!36\)\( p T^{2} + \)\(26\!\cdots\!88\)\( p^{2} T^{3} + \)\(28\!\cdots\!30\)\( p^{3} T^{4} + \)\(26\!\cdots\!88\)\( p^{27} T^{5} + \)\(10\!\cdots\!36\)\( p^{51} T^{6} + 48788561474090928 p^{75} T^{7} + p^{100} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 366855400436538264 T + \)\(37\!\cdots\!60\)\( T^{2} - \)\(81\!\cdots\!88\)\( T^{3} + \)\(13\!\cdots\!78\)\( T^{4} - \)\(81\!\cdots\!88\)\( p^{25} T^{5} + \)\(37\!\cdots\!60\)\( p^{50} T^{6} - 366855400436538264 p^{75} T^{7} + p^{100} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 5266475512689038864 T + \)\(25\!\cdots\!28\)\( T^{2} - \)\(36\!\cdots\!92\)\( T^{3} + \)\(33\!\cdots\!34\)\( p T^{4} - \)\(36\!\cdots\!92\)\( p^{25} T^{5} + \)\(25\!\cdots\!28\)\( p^{50} T^{6} - 5266475512689038864 p^{75} T^{7} + p^{100} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 82582977571412504584 T + \)\(49\!\cdots\!52\)\( T^{2} + \)\(21\!\cdots\!84\)\( T^{3} + \)\(90\!\cdots\!30\)\( T^{4} + \)\(21\!\cdots\!84\)\( p^{25} T^{5} + \)\(49\!\cdots\!52\)\( p^{50} T^{6} + 82582977571412504584 p^{75} T^{7} + p^{100} T^{8} \)
41$C_2 \wr S_4$ \( 1 + \)\(11\!\cdots\!44\)\( T + \)\(68\!\cdots\!68\)\( T^{2} + \)\(75\!\cdots\!92\)\( T^{3} + \)\(20\!\cdots\!34\)\( T^{4} + \)\(75\!\cdots\!92\)\( p^{25} T^{5} + \)\(68\!\cdots\!68\)\( p^{50} T^{6} + \)\(11\!\cdots\!44\)\( p^{75} T^{7} + p^{100} T^{8} \)
43$C_2 \wr S_4$ \( 1 - \)\(29\!\cdots\!60\)\( T + \)\(24\!\cdots\!80\)\( T^{2} - \)\(55\!\cdots\!80\)\( T^{3} + \)\(24\!\cdots\!98\)\( T^{4} - \)\(55\!\cdots\!80\)\( p^{25} T^{5} + \)\(24\!\cdots\!80\)\( p^{50} T^{6} - \)\(29\!\cdots\!60\)\( p^{75} T^{7} + p^{100} T^{8} \)
47$C_2 \wr S_4$ \( 1 - \)\(25\!\cdots\!20\)\( T + \)\(11\!\cdots\!20\)\( T^{2} + \)\(22\!\cdots\!60\)\( T^{3} + \)\(75\!\cdots\!98\)\( T^{4} + \)\(22\!\cdots\!60\)\( p^{25} T^{5} + \)\(11\!\cdots\!20\)\( p^{50} T^{6} - \)\(25\!\cdots\!20\)\( p^{75} T^{7} + p^{100} T^{8} \)
53$C_2 \wr S_4$ \( 1 - \)\(17\!\cdots\!12\)\( T + \)\(37\!\cdots\!48\)\( T^{2} - \)\(50\!\cdots\!88\)\( T^{3} + \)\(65\!\cdots\!30\)\( T^{4} - \)\(50\!\cdots\!88\)\( p^{25} T^{5} + \)\(37\!\cdots\!48\)\( p^{50} T^{6} - \)\(17\!\cdots\!12\)\( p^{75} T^{7} + p^{100} T^{8} \)
59$C_2 \wr S_4$ \( 1 + \)\(53\!\cdots\!32\)\( T + \)\(50\!\cdots\!92\)\( T^{2} + \)\(20\!\cdots\!44\)\( T^{3} + \)\(13\!\cdots\!14\)\( T^{4} + \)\(20\!\cdots\!44\)\( p^{25} T^{5} + \)\(50\!\cdots\!92\)\( p^{50} T^{6} + \)\(53\!\cdots\!32\)\( p^{75} T^{7} + p^{100} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(19\!\cdots\!00\)\( T + \)\(90\!\cdots\!76\)\( T^{2} - \)\(90\!\cdots\!00\)\( T^{3} + \)\(36\!\cdots\!46\)\( T^{4} - \)\(90\!\cdots\!00\)\( p^{25} T^{5} + \)\(90\!\cdots\!76\)\( p^{50} T^{6} - \)\(19\!\cdots\!00\)\( p^{75} T^{7} + p^{100} T^{8} \)
67$C_2 \wr S_4$ \( 1 - \)\(22\!\cdots\!72\)\( T + \)\(28\!\cdots\!72\)\( T^{2} - \)\(24\!\cdots\!40\)\( T^{3} + \)\(18\!\cdots\!86\)\( T^{4} - \)\(24\!\cdots\!40\)\( p^{25} T^{5} + \)\(28\!\cdots\!72\)\( p^{50} T^{6} - \)\(22\!\cdots\!72\)\( p^{75} T^{7} + p^{100} T^{8} \)
71$C_2 \wr S_4$ \( 1 + \)\(82\!\cdots\!08\)\( T + \)\(59\!\cdots\!28\)\( T^{2} + \)\(37\!\cdots\!56\)\( T^{3} + \)\(15\!\cdots\!70\)\( T^{4} + \)\(37\!\cdots\!56\)\( p^{25} T^{5} + \)\(59\!\cdots\!28\)\( p^{50} T^{6} + \)\(82\!\cdots\!08\)\( p^{75} T^{7} + p^{100} T^{8} \)
73$C_2 \wr S_4$ \( 1 - \)\(55\!\cdots\!68\)\( T + \)\(19\!\cdots\!28\)\( T^{2} - \)\(45\!\cdots\!72\)\( T^{3} + \)\(94\!\cdots\!10\)\( T^{4} - \)\(45\!\cdots\!72\)\( p^{25} T^{5} + \)\(19\!\cdots\!28\)\( p^{50} T^{6} - \)\(55\!\cdots\!68\)\( p^{75} T^{7} + p^{100} T^{8} \)
79$C_2 \wr S_4$ \( 1 - \)\(11\!\cdots\!60\)\( T + \)\(13\!\cdots\!96\)\( T^{2} - \)\(89\!\cdots\!20\)\( T^{3} + \)\(60\!\cdots\!06\)\( T^{4} - \)\(89\!\cdots\!20\)\( p^{25} T^{5} + \)\(13\!\cdots\!96\)\( p^{50} T^{6} - \)\(11\!\cdots\!60\)\( p^{75} T^{7} + p^{100} T^{8} \)
83$C_2 \wr S_4$ \( 1 + \)\(24\!\cdots\!04\)\( T + \)\(51\!\cdots\!80\)\( T^{2} + \)\(68\!\cdots\!24\)\( T^{3} + \)\(79\!\cdots\!86\)\( T^{4} + \)\(68\!\cdots\!24\)\( p^{25} T^{5} + \)\(51\!\cdots\!80\)\( p^{50} T^{6} + \)\(24\!\cdots\!04\)\( p^{75} T^{7} + p^{100} T^{8} \)
89$C_2 \wr S_4$ \( 1 + \)\(70\!\cdots\!08\)\( T + \)\(29\!\cdots\!92\)\( T^{2} + \)\(99\!\cdots\!96\)\( T^{3} + \)\(26\!\cdots\!14\)\( T^{4} + \)\(99\!\cdots\!96\)\( p^{25} T^{5} + \)\(29\!\cdots\!92\)\( p^{50} T^{6} + \)\(70\!\cdots\!08\)\( p^{75} T^{7} + p^{100} T^{8} \)
97$C_2 \wr S_4$ \( 1 + \)\(15\!\cdots\!48\)\( T + \)\(25\!\cdots\!92\)\( T^{2} + \)\(22\!\cdots\!20\)\( T^{3} + \)\(19\!\cdots\!26\)\( T^{4} + \)\(22\!\cdots\!20\)\( p^{25} T^{5} + \)\(25\!\cdots\!92\)\( p^{50} T^{6} + \)\(15\!\cdots\!48\)\( p^{75} T^{7} + p^{100} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.261778601273865218635055797278, −7.55763149504390845720637833992, −7.40242982521219263200210055907, −7.00798891434045335509220859301, −6.78349234785790289689252463220, −6.50432857365175385161024787479, −5.98317206398814351064296627023, −5.93073559791205231896715917495, −5.36407160517188913990754188299, −5.10883254847517096989700727407, −5.03932731376465296767391536262, −4.89466557570648250987038425641, −4.70116037586858864969836496570, −3.88407381251661718001439524430, −3.73450594082398097344142526678, −3.61906667808783979400479432925, −2.84110472395185403962082277847, −2.66676425648311612699477196126, −2.47671670759645185353059708988, −2.24755251728973214491999018172, −2.07097706028519140559650085514, −1.46856057943459527341415855780, −1.10866205417874722541528976439, −1.10520762670988228496773997418, −0.894192834311552323981584345390, 0, 0, 0, 0, 0.894192834311552323981584345390, 1.10520762670988228496773997418, 1.10866205417874722541528976439, 1.46856057943459527341415855780, 2.07097706028519140559650085514, 2.24755251728973214491999018172, 2.47671670759645185353059708988, 2.66676425648311612699477196126, 2.84110472395185403962082277847, 3.61906667808783979400479432925, 3.73450594082398097344142526678, 3.88407381251661718001439524430, 4.70116037586858864969836496570, 4.89466557570648250987038425641, 5.03932731376465296767391536262, 5.10883254847517096989700727407, 5.36407160517188913990754188299, 5.93073559791205231896715917495, 5.98317206398814351064296627023, 6.50432857365175385161024787479, 6.78349234785790289689252463220, 7.00798891434045335509220859301, 7.40242982521219263200210055907, 7.55763149504390845720637833992, 8.261778601273865218635055797278

Graph of the $Z$-function along the critical line