L(s) = 1 | + 18·4-s − 48·7-s + 808·13-s + 91·16-s − 1.76e3·19-s − 250·25-s − 864·28-s − 1.65e3·31-s + 344·37-s + 5.77e3·43-s + 656·49-s + 1.45e4·52-s − 2.01e4·61-s + 2.05e3·64-s − 1.58e3·67-s + 88·73-s − 3.16e4·76-s + 1.77e4·79-s − 3.87e4·91-s + 2.74e4·97-s − 4.50e3·100-s − 400·103-s − 6.52e3·109-s − 4.36e3·112-s + 4.74e4·121-s − 2.98e4·124-s + 127-s + ⋯ |
L(s) = 1 | + 9/8·4-s − 0.979·7-s + 4.78·13-s + 0.355·16-s − 4.87·19-s − 2/5·25-s − 1.10·28-s − 1.72·31-s + 0.251·37-s + 3.12·43-s + 0.273·49-s + 5.37·52-s − 5.42·61-s + 0.500·64-s − 0.352·67-s + 0.0165·73-s − 5.48·76-s + 2.84·79-s − 4.68·91-s + 2.91·97-s − 0.449·100-s − 0.0377·103-s − 0.548·109-s − 0.348·112-s + 3.24·121-s − 1.93·124-s + 6.20e−5·127-s + ⋯ |
Λ(s)=(=(4100625s/2ΓC(s)4L(s)Λ(5−s)
Λ(s)=(=(4100625s/2ΓC(s+2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
4100625
= 38⋅54
|
Sign: |
1
|
Analytic conductor: |
468.195 |
Root analytic conductor: |
2.15676 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 4100625, ( :2,2,2,2), 1)
|
Particular Values
L(25) |
≈ |
2.881954431 |
L(21) |
≈ |
2.881954431 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | (1+p3T2)2 |
good | 2 | D4×C2 | 1−9pT2+233T4−9p9T6+p16T8 |
| 7 | D4 | (1+24T+536T2+24p4T3+p8T4)2 |
| 11 | D4×C2 | 1−47448T2+962099378T4−47448p8T6+p16T8 |
| 13 | D4 | (1−404T+95676T2−404p4T3+p8T4)2 |
| 17 | D4×C2 | 1−138948T2+10035485318T4−138948p8T6+p16T8 |
| 19 | D4 | (1+880T+453882T2+880p4T3+p8T4)2 |
| 23 | D4×C2 | 1−254860T2+172735907622T4−254860p8T6+p16T8 |
| 29 | D4×C2 | 1−1417500T2+1274204988422T4−1417500p8T6+p16T8 |
| 31 | D4 | (1+828T+848798T2+828p4T3+p8T4)2 |
| 37 | D4 | (1−172T+2066508T2−172p4T3+p8T4)2 |
| 41 | D4×C2 | 1−4942080T2+12337515177602T4−4942080p8T6+p16T8 |
| 43 | D4 | (1−2888T+8193738T2−2888p4T3+p8T4)2 |
| 47 | D4×C2 | 1−12953940T2+88587954654182T4−12953940p8T6+p16T8 |
| 53 | D4×C2 | 1+4980300T2+23234867625062T4+4980300p8T6+p16T8 |
| 59 | D4×C2 | 1−26408088T2+396550023159218T4−26408088p8T6+p16T8 |
| 61 | D4 | (1+10084T+53084286T2+10084p4T3+p8T4)2 |
| 67 | D4 | (1+792T+37671218T2+792p4T3+p8T4)2 |
| 71 | D4×C2 | 1−71497380T2+2526354220369862T4−71497380p8T6+p16T8 |
| 73 | D4 | (1−44T+42825726T2−44p4T3+p8T4)2 |
| 79 | D4 | (1−8868T+95944478T2−8868p4T3+p8T4)2 |
| 83 | D4×C2 | 1−181435060T2+12718407730707942T4−181435060p8T6+p16T8 |
| 89 | D4×C2 | 1−97686688T2+9800859843406338T4−97686688p8T6+p16T8 |
| 97 | D4 | (1−13708T+217279038T2−13708p4T3+p8T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84803695825375675892535573059, −10.80693544336201295475119994632, −10.77058423902345769162767995327, −10.59240667688862522636706718877, −9.724306903103296351305786888932, −9.300108471976717138844016641575, −8.778761291732889550317254180504, −8.776338765626702950352932583335, −8.691358673445755338811491292137, −8.101466644287967689533201571444, −7.64198423100703328971210906800, −7.34236257637943697151803498539, −6.52235222721893519276187410121, −6.39558972005466015303304961855, −6.17660358491420999031001506089, −6.04914718707421195970427716632, −5.83689647519327057887894640108, −4.60624755953128935111878367634, −4.19251115211408132906753895843, −3.74349138203140334101296640408, −3.59308342954941308091646811226, −2.77067047971433933354780975817, −1.92090961219450480885373930013, −1.70368117018456975846546639600, −0.56448035647332114981281378946,
0.56448035647332114981281378946, 1.70368117018456975846546639600, 1.92090961219450480885373930013, 2.77067047971433933354780975817, 3.59308342954941308091646811226, 3.74349138203140334101296640408, 4.19251115211408132906753895843, 4.60624755953128935111878367634, 5.83689647519327057887894640108, 6.04914718707421195970427716632, 6.17660358491420999031001506089, 6.39558972005466015303304961855, 6.52235222721893519276187410121, 7.34236257637943697151803498539, 7.64198423100703328971210906800, 8.101466644287967689533201571444, 8.691358673445755338811491292137, 8.776338765626702950352932583335, 8.778761291732889550317254180504, 9.300108471976717138844016641575, 9.724306903103296351305786888932, 10.59240667688862522636706718877, 10.77058423902345769162767995327, 10.80693544336201295475119994632, 10.84803695825375675892535573059