L(s) = 1 | + 88·4-s + 3.76e3·16-s − 1.93e3·19-s + 3.83e3·25-s + 1.44e4·31-s − 3.35e4·49-s + 8.54e4·61-s + 7.04e4·64-s − 1.70e5·76-s − 3.98e5·79-s + 3.37e5·100-s + 6.77e3·109-s − 1.40e5·121-s + 1.27e6·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.38e6·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 11/4·4-s + 3.67·16-s − 1.23·19-s + 1.22·25-s + 2.69·31-s − 1.99·49-s + 2.94·61-s + 2.14·64-s − 3.38·76-s − 7.18·79-s + 3.37·100-s + 0.0546·109-s − 0.870·121-s + 7.41·124-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 3.72·169-s + 2.54e−6·173-s + 2.33e−6·179-s + 2.26e−6·181-s + ⋯ |
Λ(s)=(=(4100625s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=(4100625s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
4100625
= 38⋅54
|
Sign: |
1
|
Analytic conductor: |
2713.26 |
Root analytic conductor: |
2.68649 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 4100625, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
6.909729436 |
L(21) |
≈ |
6.909729436 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C22 | 1−766pT2+p10T4 |
good | 2 | C22 | (1−11p2T2+p10T4)2 |
| 7 | C22 | (1+2398pT2+p10T4)2 |
| 11 | C22 | (1+70102T2+p10T4)2 |
| 13 | C22 | (1−692186T2+p10T4)2 |
| 17 | C22 | (1−57134T2+p10T4)2 |
| 19 | C2 | (1+484T+p5T2)4 |
| 23 | C22 | (1−14654p2T2+p10T4)2 |
| 29 | C22 | (1+10530298T2+p10T4)2 |
| 31 | C2 | (1−3608T+p5T2)4 |
| 37 | C22 | (1−83802314T2+p10T4)2 |
| 41 | C22 | (1+109744402T2+p10T4)2 |
| 43 | C22 | (1−135962486T2+p10T4)2 |
| 47 | C22 | (1−367610894T2+p10T4)2 |
| 53 | C22 | (1−813621206T2+p10T4)2 |
| 59 | C22 | (1+1399356598T2+p10T4)2 |
| 61 | C2 | (1−21362T+p5T2)4 |
| 67 | C22 | (1−1504963814T2+p10T4)2 |
| 71 | C22 | (1+2510746702T2+p10T4)2 |
| 73 | C22 | (1−4138885586T2+p10T4)2 |
| 79 | C2 | (1+99616T+p5T2)4 |
| 83 | C22 | (1−4615601606T2+p10T4)2 |
| 89 | C22 | (1−3347081102T2+p10T4)2 |
| 97 | C22 | (1−13052162114T2+p10T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83224676582407332869034412173, −10.66341554480011279125419100584, −10.06257577487544824513806148999, −9.994062621061679483891007575304, −9.875688674686054121279194008582, −9.038678790073071448155169786653, −8.549920576038356203551742193463, −8.511137356933303855154340509177, −8.038277402242260252965844974223, −7.70530314059212406696192150973, −7.02392205339127744933052634002, −6.94863621667277357273183464548, −6.82059201830496534405408186100, −6.24346348423030527136328636253, −6.12352382054055081290956472604, −5.60942258597415453355976194803, −5.06591553333735791787709444121, −4.32768687810259873268172939927, −4.23536654593675827458714478007, −3.04446326279113337484234757229, −2.93966998746581877814460196130, −2.57913545993673695142714321798, −1.82450157580525235902138059426, −1.51537898602479532329673229826, −0.61890446605563412164653789820,
0.61890446605563412164653789820, 1.51537898602479532329673229826, 1.82450157580525235902138059426, 2.57913545993673695142714321798, 2.93966998746581877814460196130, 3.04446326279113337484234757229, 4.23536654593675827458714478007, 4.32768687810259873268172939927, 5.06591553333735791787709444121, 5.60942258597415453355976194803, 6.12352382054055081290956472604, 6.24346348423030527136328636253, 6.82059201830496534405408186100, 6.94863621667277357273183464548, 7.02392205339127744933052634002, 7.70530314059212406696192150973, 8.038277402242260252965844974223, 8.511137356933303855154340509177, 8.549920576038356203551742193463, 9.038678790073071448155169786653, 9.875688674686054121279194008582, 9.994062621061679483891007575304, 10.06257577487544824513806148999, 10.66341554480011279125419100584, 10.83224676582407332869034412173