L(s) = 1 | − 2·3-s + 2·4-s + 2·7-s + 9-s − 4·11-s − 4·12-s + 12·13-s + 4·16-s − 4·17-s + 2·19-s − 4·21-s − 4·23-s + 2·27-s + 4·28-s + 16·29-s + 6·31-s + 8·33-s + 2·36-s − 14·37-s − 24·39-s − 8·41-s + 36·43-s − 8·44-s − 4·47-s − 8·48-s + 7·49-s + 8·51-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 4-s + 0.755·7-s + 1/3·9-s − 1.20·11-s − 1.15·12-s + 3.32·13-s + 16-s − 0.970·17-s + 0.458·19-s − 0.872·21-s − 0.834·23-s + 0.384·27-s + 0.755·28-s + 2.97·29-s + 1.07·31-s + 1.39·33-s + 1/3·36-s − 2.30·37-s − 3.84·39-s − 1.24·41-s + 5.48·43-s − 1.20·44-s − 0.583·47-s − 1.15·48-s + 49-s + 1.12·51-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.241681974 |
L(21) |
≈ |
3.241681974 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+T+T2)2 |
| 5 | | 1 |
| 7 | C22 | 1−2T−3T2−2pT3+p2T4 |
good | 2 | C2×C22 | (1−pT2)2(1+pT2+p2T4) |
| 11 | D4×C2 | 1+4T−8T2+8T3+279T4+8pT5−8p2T6+4p3T7+p4T8 |
| 13 | D4 | (1−6T+33T2−6pT3+p2T4)2 |
| 17 | D4×C2 | 1+4T−4T2−56T3−161T4−56pT5−4p2T6+4p3T7+p4T8 |
| 19 | D4×C2 | 1−2T−3T2+62T3−388T4+62pT5−3p2T6−2p3T7+p4T8 |
| 23 | D4×C2 | 1+4T−16T2−56T3+127T4−56pT5−16p2T6+4p3T7+p4T8 |
| 29 | D4 | (1−8T+56T2−8pT3+p2T4)2 |
| 31 | D4×C2 | 1−6T−27T2−6T3+1892T4−6pT5−27p2T6−6p3T7+p4T8 |
| 37 | D4×C2 | 1+14T+75T2+658T3+6020T4+658pT5+75p2T6+14p3T7+p4T8 |
| 41 | D4 | (1+4T+68T2+4pT3+p2T4)2 |
| 43 | D4 | (1−18T+165T2−18pT3+p2T4)2 |
| 47 | D4×C2 | 1+4T+46T2−496T3−2061T4−496pT5+46p2T6+4p3T7+p4T8 |
| 53 | D4×C2 | 1−8T−50T2−64T3+6795T4−64pT5−50p2T6−8p3T7+p4T8 |
| 59 | C23 | 1−116T2+9975T4−116p2T6+p4T8 |
| 61 | D4×C2 | 1+8T−2T2−448T3−3269T4−448pT5−2p2T6+8p3T7+p4T8 |
| 67 | D4×C2 | 1+2T+31T2−322T3−4028T4−322pT5+31p2T6+2p3T7+p4T8 |
| 71 | D4 | (1+4T+144T2+4pT3+p2T4)2 |
| 73 | D4×C2 | 1+10T−21T2−250T3+2012T4−250pT5−21p2T6+10p3T7+p4T8 |
| 79 | D4×C2 | 1+2T−123T2−62T3+9572T4−62pT5−123p2T6+2p3T7+p4T8 |
| 83 | D4 | (1+8T+180T2+8pT3+p2T4)2 |
| 89 | D4×C2 | 1−16T+32T2−736T3+19471T4−736pT5+32p2T6−16p3T7+p4T8 |
| 97 | D4 | (1−16T+250T2−16pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.59680816073005120190443971702, −7.50915357451069729783977342355, −7.44011287278583518695134941053, −7.05558052780846275197310253356, −7.00456498950766796807564399515, −6.46368048800085617685875886813, −6.17991254443848803928791093872, −5.95355349157480781183110511691, −5.92277023270848668495261901851, −5.88870260812422690972763569435, −5.75556878130513889407475945658, −4.90219962096394044195593052436, −4.76185966475079827734485526396, −4.67672434575019028170946460263, −4.62101962538669186801178569230, −3.80927029638126628561973823840, −3.71232974096582585921858578820, −3.44207219437497943693608926365, −3.12751126942958120730267843995, −2.56817056252267954857911553392, −2.35162858068350172181695472222, −2.08236511203292890354092003344, −1.42435431579097682436193401469, −0.940784216866663612608743471700, −0.839952529568944702235911553116,
0.839952529568944702235911553116, 0.940784216866663612608743471700, 1.42435431579097682436193401469, 2.08236511203292890354092003344, 2.35162858068350172181695472222, 2.56817056252267954857911553392, 3.12751126942958120730267843995, 3.44207219437497943693608926365, 3.71232974096582585921858578820, 3.80927029638126628561973823840, 4.62101962538669186801178569230, 4.67672434575019028170946460263, 4.76185966475079827734485526396, 4.90219962096394044195593052436, 5.75556878130513889407475945658, 5.88870260812422690972763569435, 5.92277023270848668495261901851, 5.95355349157480781183110511691, 6.17991254443848803928791093872, 6.46368048800085617685875886813, 7.00456498950766796807564399515, 7.05558052780846275197310253356, 7.44011287278583518695134941053, 7.50915357451069729783977342355, 7.59680816073005120190443971702