L(s) = 1 | + 9-s + 12·11-s + 4·16-s + 2·19-s + 32·29-s − 2·31-s − 24·41-s + 13·49-s − 16·59-s + 28·61-s + 24·71-s − 2·79-s − 24·89-s + 12·99-s + 20·101-s − 30·109-s + 58·121-s + 127-s + 131-s + 137-s + 139-s + 4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 3.61·11-s + 16-s + 0.458·19-s + 5.94·29-s − 0.359·31-s − 3.74·41-s + 13/7·49-s − 2.08·59-s + 3.58·61-s + 2.84·71-s − 0.225·79-s − 2.54·89-s + 1.20·99-s + 1.99·101-s − 2.87·109-s + 5.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.894986155 |
L(21) |
≈ |
4.894986155 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1−T2+T4 |
| 5 | | 1 |
| 7 | C22 | 1−13T2+p2T4 |
good | 2 | C22×C22 | (1−pT+pT2−p2T3+p2T4)(1+pT+pT2+p2T3+p2T4) |
| 11 | C22 | (1−6T+25T2−6pT3+p2T4)2 |
| 13 | C22 | (1−17T2+p2T4)2 |
| 17 | C23 | 1+18T2+35T4+18p2T6+p4T8 |
| 19 | C2 | (1−8T+pT2)2(1+7T+pT2)2 |
| 23 | C23 | 1+30T2+371T4+30p2T6+p4T8 |
| 29 | C2 | (1−8T+pT2)4 |
| 31 | C22 | (1+T−30T2+pT3+p2T4)2 |
| 37 | C23 | 1+25T2−744T4+25p2T6+p4T8 |
| 41 | C2 | (1+6T+pT2)4 |
| 43 | C22 | (1−85T2+p2T4)2 |
| 47 | C23 | 1+90T2+5891T4+90p2T6+p4T8 |
| 53 | C22×C22 | (1−14T+143T2−14pT3+p2T4)(1+14T+143T2+14pT3+p2T4) |
| 59 | C22 | (1+8T+5T2+8pT3+p2T4)2 |
| 61 | C2 | (1−13T+pT2)2(1−T+pT2)2 |
| 67 | C23 | 1+85T2+2736T4+85p2T6+p4T8 |
| 71 | C2 | (1−6T+pT2)4 |
| 73 | C23 | 1+145T2+15696T4+145p2T6+p4T8 |
| 79 | C22 | (1+T−78T2+pT3+p2T4)2 |
| 83 | C22 | (1−162T2+p2T4)2 |
| 89 | C22 | (1+12T+55T2+12pT3+p2T4)2 |
| 97 | C22 | (1−158T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.102608414592475861344752028736, −7.49603697203859800003880980761, −7.38525620926607830956039300932, −6.82489351120759028108738776922, −6.61615645401728381683934064004, −6.61266813666980583828202704548, −6.58735462151392219376968625295, −6.54135486601632489052566134698, −5.91821278944175291492919135726, −5.70350134481724424894284273379, −5.18944761079774619361655332962, −5.02329368734033427578974993846, −4.98882105457079440425963807600, −4.51683677201848150417456923096, −4.05806247224254642935848743224, −3.95049740998953673640855107249, −3.91233971269841431758581248533, −3.40106121564142083238630934460, −3.13302237763329420687032780019, −2.78879427067648028942137348310, −2.45005423925989771272156664703, −1.86455872379287335964664445562, −1.33411197160609318755312097842, −1.05841596916921040601553479351, −1.00549029580644746002583426987,
1.00549029580644746002583426987, 1.05841596916921040601553479351, 1.33411197160609318755312097842, 1.86455872379287335964664445562, 2.45005423925989771272156664703, 2.78879427067648028942137348310, 3.13302237763329420687032780019, 3.40106121564142083238630934460, 3.91233971269841431758581248533, 3.95049740998953673640855107249, 4.05806247224254642935848743224, 4.51683677201848150417456923096, 4.98882105457079440425963807600, 5.02329368734033427578974993846, 5.18944761079774619361655332962, 5.70350134481724424894284273379, 5.91821278944175291492919135726, 6.54135486601632489052566134698, 6.58735462151392219376968625295, 6.61266813666980583828202704548, 6.61615645401728381683934064004, 6.82489351120759028108738776922, 7.38525620926607830956039300932, 7.49603697203859800003880980761, 8.102608414592475861344752028736