L(s) = 1 | − 2·4-s + 6·9-s − 5·16-s − 12·36-s − 24·41-s − 2·49-s − 48·59-s + 20·64-s − 32·79-s + 27·81-s + 24·89-s + 24·101-s + 8·109-s + 20·121-s + 127-s + 131-s + 137-s + 139-s − 30·144-s + 149-s + 151-s + 157-s + 163-s + 48·164-s + 167-s − 52·169-s + 173-s + ⋯ |
L(s) = 1 | − 4-s + 2·9-s − 5/4·16-s − 2·36-s − 3.74·41-s − 2/7·49-s − 6.24·59-s + 5/2·64-s − 3.60·79-s + 3·81-s + 2.54·89-s + 2.38·101-s + 0.766·109-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5/2·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 3.74·164-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7502262473 |
L(21) |
≈ |
0.7502262473 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1−pT2)2 |
| 5 | | 1 |
| 7 | C22 | 1+2T2+p2T4 |
good | 2 | C22 | (1+T2+p2T4)2 |
| 11 | C22 | (1−10T2+p2T4)2 |
| 13 | C2 | (1+pT2)4 |
| 17 | C22 | (1+2T2+p2T4)2 |
| 19 | C2 | (1−8T+pT2)2(1+8T+pT2)2 |
| 23 | C22 | (1+34T2+p2T4)2 |
| 29 | C22 | (1−10T2+p2T4)2 |
| 31 | C22 | (1−50T2+p2T4)2 |
| 37 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 41 | C2 | (1+6T+pT2)4 |
| 43 | C22 | (1−22T2+p2T4)2 |
| 47 | C22 | (1+50T2+p2T4)2 |
| 53 | C2 | (1+pT2)4 |
| 59 | C2 | (1+12T+pT2)4 |
| 61 | C2 | (1−14T+pT2)2(1+14T+pT2)2 |
| 67 | C22 | (1−70T2+p2T4)2 |
| 71 | C22 | (1−130T2+p2T4)2 |
| 73 | C22 | (1+98T2+p2T4)2 |
| 79 | C2 | (1+8T+pT2)4 |
| 83 | C2 | (1−pT2)4 |
| 89 | C2 | (1−6T+pT2)4 |
| 97 | C22 | (1+146T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80691236815812847801061710954, −7.57241858477325853407614587762, −7.26680344576942928881004047252, −7.11259579238074505442502198256, −7.05375632988217755079917383587, −6.70521078429031870970319935908, −6.32116898665438022856370985347, −6.11191443730594698930135763594, −6.04741784685578589167522285886, −5.72412556715800302836313090176, −4.95151852031948174821800403142, −4.87733816347142457872542983804, −4.84012215124110855288502951239, −4.75777086974369717831420958247, −4.40061393218100143317930118227, −3.96294151665143071234302213924, −3.84294620227438735573679925753, −3.39952301725385244109906433575, −3.07240870077918639526649588377, −2.97719156167324051890750767877, −2.16764245529004211572156235362, −1.77725026979383506704419911943, −1.75446713377922185508226898441, −1.19715780883625252829434054165, −0.29422615950307160400937029934,
0.29422615950307160400937029934, 1.19715780883625252829434054165, 1.75446713377922185508226898441, 1.77725026979383506704419911943, 2.16764245529004211572156235362, 2.97719156167324051890750767877, 3.07240870077918639526649588377, 3.39952301725385244109906433575, 3.84294620227438735573679925753, 3.96294151665143071234302213924, 4.40061393218100143317930118227, 4.75777086974369717831420958247, 4.84012215124110855288502951239, 4.87733816347142457872542983804, 4.95151852031948174821800403142, 5.72412556715800302836313090176, 6.04741784685578589167522285886, 6.11191443730594698930135763594, 6.32116898665438022856370985347, 6.70521078429031870970319935908, 7.05375632988217755079917383587, 7.11259579238074505442502198256, 7.26680344576942928881004047252, 7.57241858477325853407614587762, 7.80691236815812847801061710954