L(s) = 1 | + 4-s + 6·9-s + 12·11-s + 4·16-s + 24·19-s − 12·31-s + 6·36-s + 12·41-s + 12·44-s − 11·49-s − 18·61-s + 11·64-s + 24·76-s − 32·79-s + 27·81-s − 6·89-s + 72·99-s − 30·101-s − 10·109-s + 62·121-s − 12·124-s + 127-s + 131-s + 137-s + 139-s + 24·144-s + 149-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 2·9-s + 3.61·11-s + 16-s + 5.50·19-s − 2.15·31-s + 36-s + 1.87·41-s + 1.80·44-s − 1.57·49-s − 2.30·61-s + 11/8·64-s + 2.75·76-s − 3.60·79-s + 3·81-s − 0.635·89-s + 7.23·99-s − 2.98·101-s − 0.957·109-s + 5.63·121-s − 1.07·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2·144-s + 0.0819·149-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.968097147 |
L(21) |
≈ |
6.968097147 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1−pT2)2 |
| 5 | | 1 |
| 7 | C22 | 1+11T2+p2T4 |
good | 2 | C23 | 1−T2−3T4−p2T6+p4T8 |
| 11 | C22 | (1−6T+23T2−6pT3+p2T4)2 |
| 13 | C22 | (1+14T2+p2T4)2 |
| 17 | C23 | 1−2T2−285T4−2p2T6+p4T8 |
| 19 | C22 | (1−12T+67T2−12pT3+p2T4)2 |
| 23 | C23 | 1−43T2+1320T4−43p2T6+p4T8 |
| 29 | C22 | (1−55T2+p2T4)2 |
| 31 | C22 | (1+6T+43T2+6pT3+p2T4)2 |
| 37 | C23 | 1+58T2+1995T4+58p2T6+p4T8 |
| 41 | C2 | (1−3T+pT2)4 |
| 43 | C22 | (1−85T2+p2T4)2 |
| 47 | C22 | (1+pT2+p2T4)2 |
| 53 | C22 | (1−pT2+p2T4)2 |
| 59 | C22 | (1−pT2+p2T4)2 |
| 61 | C22 | (1+9T+88T2+9pT3+p2T4)2 |
| 67 | C23 | 1−35T2−3264T4−35p2T6+p4T8 |
| 71 | C22 | (1−94T2+p2T4)2 |
| 73 | C23 | 1−134T2+12627T4−134p2T6+p4T8 |
| 79 | C22 | (1+16T+177T2+16pT3+p2T4)2 |
| 83 | C22 | (1−85T2+p2T4)2 |
| 89 | C22 | (1+3T−80T2+3pT3+p2T4)2 |
| 97 | C22 | (1+86T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.54921814427815681258993273403, −7.50428485946865767730072012788, −7.31033368435066735433427625140, −7.29566859442582246722274483474, −6.91949507923541747152764644619, −6.80096621583653811954925738727, −6.39972015410778239529421948402, −6.20141644342548783305907344934, −5.83025680988162103032916167468, −5.68339366934249967285302593489, −5.48920790007260281755087379050, −5.08913806255409155908644584269, −4.70381502499563334361396306879, −4.66737280527091704175577676502, −4.14155564474991405239456537291, −3.81510172024577813546451272901, −3.72082600735245644150677243387, −3.40872774406492731852483830527, −3.35747657652967672257394437758, −2.77490445959488058314570683135, −2.44170852374756167251648637033, −1.43417768136278236277081248175, −1.41238821761972006969970198869, −1.24492861112514253003065757861, −1.23377345390456658824732183758,
1.23377345390456658824732183758, 1.24492861112514253003065757861, 1.41238821761972006969970198869, 1.43417768136278236277081248175, 2.44170852374756167251648637033, 2.77490445959488058314570683135, 3.35747657652967672257394437758, 3.40872774406492731852483830527, 3.72082600735245644150677243387, 3.81510172024577813546451272901, 4.14155564474991405239456537291, 4.66737280527091704175577676502, 4.70381502499563334361396306879, 5.08913806255409155908644584269, 5.48920790007260281755087379050, 5.68339366934249967285302593489, 5.83025680988162103032916167468, 6.20141644342548783305907344934, 6.39972015410778239529421948402, 6.80096621583653811954925738727, 6.91949507923541747152764644619, 7.29566859442582246722274483474, 7.31033368435066735433427625140, 7.50428485946865767730072012788, 7.54921814427815681258993273403