L(s) = 1 | − 8·4-s + 6·9-s + 40·16-s − 48·36-s − 11·49-s − 160·64-s + 16·79-s + 27·81-s − 76·109-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 240·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 88·196-s + ⋯ |
L(s) = 1 | − 4·4-s + 2·9-s + 10·16-s − 8·36-s − 1.57·49-s − 20·64-s + 1.80·79-s + 3·81-s − 7.27·109-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 20·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 44/7·196-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5139687587 |
L(21) |
≈ |
0.5139687587 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1−pT2)2 |
| 5 | | 1 |
| 7 | C22 | 1+11T2+p2T4 |
good | 2 | C2 | (1+pT2)4 |
| 11 | C2 | (1−pT2)4 |
| 13 | C22 | (1−T2+p2T4)2 |
| 17 | C2 | (1−pT2)4 |
| 19 | C2 | (1−T+pT2)2(1+T+pT2)2 |
| 23 | C2 | (1+pT2)4 |
| 29 | C2 | (1−pT2)4 |
| 31 | C2 | (1−7T+pT2)2(1+7T+pT2)2 |
| 37 | C22 | (1+26T2+p2T4)2 |
| 41 | C2 | (1+pT2)4 |
| 43 | C22 | (1−61T2+p2T4)2 |
| 47 | C2 | (1−pT2)4 |
| 53 | C2 | (1+pT2)4 |
| 59 | C2 | (1+pT2)4 |
| 61 | C2 | (1−13T+pT2)2(1+13T+pT2)2 |
| 67 | C22 | (1−109T2+p2T4)2 |
| 71 | C2 | (1−pT2)4 |
| 73 | C22 | (1−46T2+p2T4)2 |
| 79 | C2 | (1−4T+pT2)4 |
| 83 | C2 | (1−pT2)4 |
| 89 | C2 | (1+pT2)4 |
| 97 | C22 | (1−169T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.892373657994132158383364893483, −7.72472803048816042952177769385, −7.52691468897359460854277318247, −7.31909911075668038044554405328, −6.94528768279055183720331696645, −6.48180853456505477535957617944, −6.27331866249875387612168106742, −6.26650531315286869363913951717, −5.65537697477364257038411022252, −5.34934078652998875859280284817, −5.25319537156480419360196590242, −5.05521707132237474578327744846, −4.69970713442226506322571479400, −4.65708942210780292188596659207, −4.23950650292507199390242448515, −3.97788750817692412371426635244, −3.95588915906764318521666195230, −3.63816324703329082798230012468, −3.30527053522407803150577570583, −2.98904242763748093802211547049, −2.40628662692044119453696030807, −1.65346617475158190382470573438, −1.32405775916972774205726664311, −1.02685279558057878079671248462, −0.33090966372630186139671030315,
0.33090966372630186139671030315, 1.02685279558057878079671248462, 1.32405775916972774205726664311, 1.65346617475158190382470573438, 2.40628662692044119453696030807, 2.98904242763748093802211547049, 3.30527053522407803150577570583, 3.63816324703329082798230012468, 3.95588915906764318521666195230, 3.97788750817692412371426635244, 4.23950650292507199390242448515, 4.65708942210780292188596659207, 4.69970713442226506322571479400, 5.05521707132237474578327744846, 5.25319537156480419360196590242, 5.34934078652998875859280284817, 5.65537697477364257038411022252, 6.26650531315286869363913951717, 6.27331866249875387612168106742, 6.48180853456505477535957617944, 6.94528768279055183720331696645, 7.31909911075668038044554405328, 7.52691468897359460854277318247, 7.72472803048816042952177769385, 7.892373657994132158383364893483