L(s) = 1 | + 2·2-s − 4·3-s + 2·4-s − 8·6-s + 2·7-s + 5·8-s + 13·9-s + 3·11-s − 8·12-s − 9·13-s + 4·14-s + 5·16-s + 7·17-s + 26·18-s + 5·19-s − 8·21-s + 6·22-s − 9·23-s − 20·24-s − 18·26-s − 30·27-s + 4·28-s − 2·31-s − 2·32-s − 12·33-s + 14·34-s + 26·36-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 2.30·3-s + 4-s − 3.26·6-s + 0.755·7-s + 1.76·8-s + 13/3·9-s + 0.904·11-s − 2.30·12-s − 2.49·13-s + 1.06·14-s + 5/4·16-s + 1.69·17-s + 6.12·18-s + 1.14·19-s − 1.74·21-s + 1.27·22-s − 1.87·23-s − 4.08·24-s − 3.53·26-s − 5.77·27-s + 0.755·28-s − 0.359·31-s − 0.353·32-s − 2.08·33-s + 2.40·34-s + 13/3·36-s + ⋯ |
Λ(s)=(=((516)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((516)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
516
|
Sign: |
1
|
Analytic conductor: |
620.338 |
Root analytic conductor: |
2.23397 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 516, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.909590826 |
L(21) |
≈ |
3.909590826 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
good | 2 | C22:C4 | 1−pT+pT2−5T3+11T4−5pT5+p3T6−p4T7+p4T8 |
| 3 | C22:C4 | 1+4T+pT2−10T3−29T4−10pT5+p3T6+4p3T7+p4T8 |
| 7 | D4 | (1−T+3T2−pT3+p2T4)2 |
| 11 | C4×C4 | (1−4T+6T2−4pT3+p2T4)(1+T−9T2+pT3+p2T4) |
| 13 | C22:C4 | 1+9T+48T2+235T3+1011T4+235pT5+48p2T6+9p3T7+p4T8 |
| 17 | C22:C4 | 1−7T+52T2−245T3+1311T4−245pT5+52p2T6−7p3T7+p4T8 |
| 19 | C22:C4 | 1−5T+21T2−145T3+956T4−145pT5+21p2T6−5p3T7+p4T8 |
| 23 | C22:C4 | 1+9T+13T2−15T3+196T4−15pT5+13p2T6+9p3T7+p4T8 |
| 29 | C22:C4 | 1+11T2+90T3+661T4+90pT5+11p2T6+p4T8 |
| 31 | C4×C2 | 1+2T−27T2−116T3+605T4−116pT5−27p2T6+2p3T7+p4T8 |
| 37 | C4×C2 | 1+3T−28T2−195T3+451T4−195pT5−28p2T6+3p3T7+p4T8 |
| 41 | C22:C4 | 1−8T+23T2−356T3+3905T4−356pT5+23p2T6−8p3T7+p4T8 |
| 43 | D4 | (1−8T+82T2−8pT3+p2T4)2 |
| 47 | C22:C4 | 1+13T+67T2−115T3−3864T4−115pT5+67p2T6+13p3T7+p4T8 |
| 53 | C22:C4 | 1+14T+23T2−400T3−2899T4−400pT5+23p2T6+14p3T7+p4T8 |
| 59 | C22:C4 | 1+15T+206T2+1965T3+18601T4+1965pT5+206p2T6+15p3T7+p4T8 |
| 61 | C22:C4 | 1+2T+3T2+424T3+4265T4+424pT5+3p2T6+2p3T7+p4T8 |
| 67 | C22:C4 | 1−17T+42T2+1025T3−12559T4+1025pT5+42p2T6−17p3T7+p4T8 |
| 71 | C22:C4 | 1−13T+133T2−1541T3+17940T4−1541pT5+133p2T6−13p3T7+p4T8 |
| 73 | C22:C4 | 1−11T−27T2+515T3−364T4+515pT5−27p2T6−11p3T7+p4T8 |
| 79 | C4×C2 | 1−15T+56T2−675T3+11821T4−675pT5+56p2T6−15p3T7+p4T8 |
| 83 | C22:C4 | 1+24T+173T2+360T3+361T4+360pT5+173p2T6+24p3T7+p4T8 |
| 89 | C22:C4 | 1−79T2−420T3+7501T4−420pT5−79p2T6+p4T8 |
| 97 | C22:C4 | 1−12T−3T2+1220T3−13419T4+1220pT5−3p2T6−12p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.47836318088706972732893084734, −7.33600057268098509361781271926, −7.27065474882939287827323978196, −6.82931178072249117282980337294, −6.56294181489535797219594877233, −6.30514150552568834721157066857, −6.26635016774119225323197472347, −5.91599592953959347989224756091, −5.52405395929281706886118680218, −5.29068520051448658715331020709, −5.25351622840027320775193644875, −4.85104492359748857139906578976, −4.75503919582521384755757918915, −4.64714061143781013976389274238, −4.32841469839764762129920312591, −4.04707876825926941313672645168, −3.88777033794191258070430882843, −3.35623568282945456974879732985, −3.25482761404315604856614474424, −2.61463517132116180693321874054, −1.88265087388517799331158264316, −1.86671081774407816360712955642, −1.80619808202100508086949096656, −0.894556500888698653190925372447, −0.67382017456348229249607518921,
0.67382017456348229249607518921, 0.894556500888698653190925372447, 1.80619808202100508086949096656, 1.86671081774407816360712955642, 1.88265087388517799331158264316, 2.61463517132116180693321874054, 3.25482761404315604856614474424, 3.35623568282945456974879732985, 3.88777033794191258070430882843, 4.04707876825926941313672645168, 4.32841469839764762129920312591, 4.64714061143781013976389274238, 4.75503919582521384755757918915, 4.85104492359748857139906578976, 5.25351622840027320775193644875, 5.29068520051448658715331020709, 5.52405395929281706886118680218, 5.91599592953959347989224756091, 6.26635016774119225323197472347, 6.30514150552568834721157066857, 6.56294181489535797219594877233, 6.82931178072249117282980337294, 7.27065474882939287827323978196, 7.33600057268098509361781271926, 7.47836318088706972732893084734