L(s) = 1 | + 4-s − 6·9-s − 8·11-s − 2·29-s + 16·31-s − 6·36-s + 18·41-s − 8·44-s + 2·49-s − 8·59-s − 14·61-s − 64-s + 16·71-s + 16·79-s + 9·81-s − 12·89-s + 48·99-s − 14·101-s + 8·109-s − 2·116-s + 38·121-s + 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2·9-s − 2.41·11-s − 0.371·29-s + 2.87·31-s − 36-s + 2.81·41-s − 1.20·44-s + 2/7·49-s − 1.04·59-s − 1.79·61-s − 1/8·64-s + 1.89·71-s + 1.80·79-s + 81-s − 1.27·89-s + 4.82·99-s − 1.39·101-s + 0.766·109-s − 0.185·116-s + 3.45·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
Λ(s)=(=((24⋅58⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅58⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅58⋅134
|
Sign: |
1
|
Analytic conductor: |
725.707 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅58⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.587485794 |
L(21) |
≈ |
1.587485794 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1−T2+T4 |
| 5 | | 1 |
| 13 | C22 | 1+23T2+p2T4 |
good | 3 | C22 | (1+pT2+p2T4)2 |
| 7 | C22×C22 | (1−13T2+p2T4)(1+11T2+p2T4) |
| 11 | C22 | (1+4T+5T2+4pT3+p2T4)2 |
| 17 | C23 | 1+25T2+336T4+25p2T6+p4T8 |
| 19 | C22 | (1−pT2+p2T4)2 |
| 23 | C23 | 1+30T2+371T4+30p2T6+p4T8 |
| 29 | C22 | (1+T−28T2+pT3+p2T4)2 |
| 31 | C2 | (1−4T+pT2)4 |
| 37 | C23 | 1+65T2+2856T4+65p2T6+p4T8 |
| 41 | C22 | (1−9T+40T2−9pT3+p2T4)2 |
| 43 | C22×C22 | (1−61T2+p2T4)(1+83T2+p2T4) |
| 47 | C22 | (1−30T2+p2T4)2 |
| 53 | C22 | (1−25T2+p2T4)2 |
| 59 | C22 | (1+4T−43T2+4pT3+p2T4)2 |
| 61 | C22 | (1+7T−12T2+7pT3+p2T4)2 |
| 67 | C23 | 1+118T2+9435T4+118p2T6+p4T8 |
| 71 | C22 | (1−8T−7T2−8pT3+p2T4)2 |
| 73 | C22 | (1−25T2+p2T4)2 |
| 79 | C2 | (1−4T+pT2)4 |
| 83 | C2 | (1−pT2)4 |
| 89 | C22 | (1+6T−53T2+6pT3+p2T4)2 |
| 97 | C23 | 1+190T2+26691T4+190p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.64440090888471205407183644984, −7.47057953950097738401686145619, −7.17761209985030149240914205021, −6.96572641400873621483563268841, −6.51742077064137406483133723657, −6.43385728576875241311207717413, −6.12461220682501026577217382826, −5.79446905463061659546830680489, −5.60034404424060112891284323826, −5.56532112037077169937601262187, −5.51483680838494261696577765261, −4.71423993774995886462195233697, −4.60682463175509487754318673477, −4.51518566006225694065999702056, −4.46428528797228893896671213373, −3.59453650167956852239802233846, −3.31839395665777794749042032370, −3.27107762032616699035558959007, −2.73724946181445990725714237399, −2.68037382483886837285955979260, −2.33821431991323016906059493486, −2.23814912793082852776572003796, −1.57556347262722484911703511943, −0.78846958689503377595506759044, −0.46029968845804465031127256987,
0.46029968845804465031127256987, 0.78846958689503377595506759044, 1.57556347262722484911703511943, 2.23814912793082852776572003796, 2.33821431991323016906059493486, 2.68037382483886837285955979260, 2.73724946181445990725714237399, 3.27107762032616699035558959007, 3.31839395665777794749042032370, 3.59453650167956852239802233846, 4.46428528797228893896671213373, 4.51518566006225694065999702056, 4.60682463175509487754318673477, 4.71423993774995886462195233697, 5.51483680838494261696577765261, 5.56532112037077169937601262187, 5.60034404424060112891284323826, 5.79446905463061659546830680489, 6.12461220682501026577217382826, 6.43385728576875241311207717413, 6.51742077064137406483133723657, 6.96572641400873621483563268841, 7.17761209985030149240914205021, 7.47057953950097738401686145619, 7.64440090888471205407183644984