L(s) = 1 | + 6·9-s − 6·13-s − 2·17-s + 6·25-s − 10·29-s − 6·37-s + 30·41-s − 14·49-s + 28·53-s + 10·61-s + 9·81-s + 2·101-s + 14·113-s − 36·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + 163-s + 167-s + 13·169-s + 173-s + ⋯ |
L(s) = 1 | + 2·9-s − 1.66·13-s − 0.485·17-s + 6/5·25-s − 1.85·29-s − 0.986·37-s + 4.68·41-s − 2·49-s + 3.84·53-s + 1.28·61-s + 81-s + 0.199·101-s + 1.31·113-s − 3.32·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.636013848 |
L(21) |
≈ |
3.636013848 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C22 | 1+6T+23T2+6pT3+p2T4 |
good | 3 | C2 | (1−pT+pT2)2(1+pT+pT2)2 |
| 5 | C22×C22 | (1−2T−T2−2pT3+p2T4)(1+2T−T2+2pT3+p2T4) |
| 7 | C22 | (1+pT2+p2T4)2 |
| 11 | C22 | (1+pT2+p2T4)2 |
| 17 | C2×C22 | (1+2T+pT2)2(1−2T−13T2−2pT3+p2T4) |
| 19 | C22 | (1+pT2+p2T4)2 |
| 23 | C22 | (1−pT2+p2T4)2 |
| 29 | C2×C22 | (1+10T+pT2)2(1−10T+71T2−10pT3+p2T4) |
| 31 | C2 | (1−pT2)4 |
| 37 | C2×C22 | (1+2T+pT2)2(1+2T−33T2+2pT3+p2T4) |
| 41 | C2×C22 | (1−10T+pT2)2(1−10T+59T2−10pT3+p2T4) |
| 43 | C22 | (1−pT2+p2T4)2 |
| 47 | C2 | (1−pT2)4 |
| 53 | C22 | (1−14T+143T2−14pT3+p2T4)2 |
| 59 | C22 | (1+pT2+p2T4)2 |
| 61 | C2×C22 | (1−10T+pT2)2(1+10T+39T2+10pT3+p2T4) |
| 67 | C22 | (1+pT2+p2T4)2 |
| 71 | C22 | (1+pT2+p2T4)2 |
| 73 | C22×C22 | (1−6T−37T2−6pT3+p2T4)(1+6T−37T2+6pT3+p2T4) |
| 79 | C2 | (1+pT2)4 |
| 83 | C2 | (1−pT2)4 |
| 89 | C22×C22 | (1−10T+11T2−10pT3+p2T4)(1+10T+11T2+10pT3+p2T4) |
| 97 | C22×C22 | (1−18T+227T2−18pT3+p2T4)(1+18T+227T2+18pT3+p2T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.35980518253909685575193985582, −7.11942912006529193396149136100, −7.03220731796157655742113515926, −6.80320491925983670412259406086, −6.44367094403460190356525907121, −6.23153950091752575337230252525, −5.93545879801345982654360249689, −5.62098404848355457271241564505, −5.52683977412504862741298081037, −5.16317656016863442312993040933, −4.93609722390651832568221771329, −4.73809689660409866311526501350, −4.40555019126567613805182183371, −4.12669727066899849429281092934, −4.11707234918729206463761626035, −3.74094497163267420718224581248, −3.56469633631798894588431908035, −2.90842341105189175552671471525, −2.73975812479733410530884682120, −2.53224780402548652811020075225, −2.03640995641928478005437404317, −1.88963296536091567284510408188, −1.49618214413520375105363943287, −0.78531418781299928607607743514, −0.63023673440877619986476727710,
0.63023673440877619986476727710, 0.78531418781299928607607743514, 1.49618214413520375105363943287, 1.88963296536091567284510408188, 2.03640995641928478005437404317, 2.53224780402548652811020075225, 2.73975812479733410530884682120, 2.90842341105189175552671471525, 3.56469633631798894588431908035, 3.74094497163267420718224581248, 4.11707234918729206463761626035, 4.12669727066899849429281092934, 4.40555019126567613805182183371, 4.73809689660409866311526501350, 4.93609722390651832568221771329, 5.16317656016863442312993040933, 5.52683977412504862741298081037, 5.62098404848355457271241564505, 5.93545879801345982654360249689, 6.23153950091752575337230252525, 6.44367094403460190356525907121, 6.80320491925983670412259406086, 7.03220731796157655742113515926, 7.11942912006529193396149136100, 7.35980518253909685575193985582