L(s) = 1 | − 6·3-s + 16·9-s − 4·13-s − 6·17-s − 6·19-s − 6·23-s − 14·25-s − 24·27-s − 12·29-s + 8·37-s + 24·39-s − 18·41-s − 36·43-s − 10·49-s + 36·51-s + 36·57-s − 12·59-s − 36·61-s − 6·67-s + 36·69-s + 30·71-s + 84·75-s − 24·79-s + 21·81-s − 24·83-s + 72·87-s − 12·89-s + ⋯ |
L(s) = 1 | − 3.46·3-s + 16/3·9-s − 1.10·13-s − 1.45·17-s − 1.37·19-s − 1.25·23-s − 2.79·25-s − 4.61·27-s − 2.22·29-s + 1.31·37-s + 3.84·39-s − 2.81·41-s − 5.48·43-s − 1.42·49-s + 5.04·51-s + 4.76·57-s − 1.56·59-s − 4.60·61-s − 0.733·67-s + 4.33·69-s + 3.56·71-s + 9.69·75-s − 2.70·79-s + 7/3·81-s − 2.63·83-s + 7.71·87-s − 1.27·89-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C22 | 1+4T+3T2+4pT3+p2T4 |
good | 3 | D4×C2 | 1+2pT+20T2+16pT3+91T4+16p2T5+20p2T6+2p4T7+p4T8 |
| 5 | C22 | (1+7T2+p2T4)2 |
| 7 | C23 | 1+10T2+51T4+10p2T6+p4T8 |
| 11 | C23 | 1−10T2−21T4−10p2T6+p4T8 |
| 17 | D4×C2 | 1+6T+5T2−18T3+60T4−18pT5+5p2T6+6p3T7+p4T8 |
| 19 | D4×C2 | 1+6T−8T2+36T3+891T4+36pT5−8p2T6+6p3T7+p4T8 |
| 23 | D4×C2 | 1+6T−16T2+36T3+1347T4+36pT5−16p2T6+6p3T7+p4T8 |
| 29 | D4×C2 | 1+12T+109T2+732T3+4272T4+732pT5+109p2T6+12p3T7+p4T8 |
| 31 | D4×C2 | 1−20T2−678T4−20p2T6+p4T8 |
| 37 | D4×C2 | 1−8T+T2+88T3+232T4+88pT5+p2T6−8p3T7+p4T8 |
| 41 | C22 | (1+9T+68T2+9pT3+p2T4)2 |
| 43 | D4×C2 | 1+36T+622T2+6840T3+52827T4+6840pT5+622p2T6+36p3T7+p4T8 |
| 47 | D4×C2 | 1−20T2+1818T4−20p2T6+p4T8 |
| 53 | D4×C2 | 1−26T2+1899T4−26p2T6+p4T8 |
| 59 | D4×C2 | 1+12T+38T2−144T3−741T4−144pT5+38p2T6+12p3T7+p4T8 |
| 61 | D4×C2 | 1+36T+653T2+7956T3+71472T4+7956pT5+653p2T6+36p3T7+p4T8 |
| 67 | D4×C2 | 1+6T−80T2−108T3+6555T4−108pT5−80p2T6+6p3T7+p4T8 |
| 71 | D4×C2 | 1−30T+508T2−6240T3+59523T4−6240pT5+508p2T6−30p3T7+p4T8 |
| 73 | C22 | (1−119T2+p2T4)2 |
| 79 | C2 | (1+6T+pT2)4 |
| 83 | D4 | (1+12T+190T2+12pT3+p2T4)2 |
| 89 | D4×C2 | 1+12T+94T2+552T3−1533T4+552pT5+94p2T6+12p3T7+p4T8 |
| 97 | C23 | 1+158T2+15555T4+158p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.72408930626670411408262597742, −7.51688178351082182344109482824, −7.13950416034596584885515816296, −6.83974332914137070798219456170, −6.80090567775694803637690421120, −6.47715012416389482423931812368, −6.43255493432673088387957864134, −6.01685940753180579280486418089, −6.00507102378909348348141838790, −5.72123882800760642411037093895, −5.53510546586307052289615881679, −5.37965047500399563365257126725, −5.09977681012943747586778877994, −4.66932085531096349826805844152, −4.52477829635618333634785034522, −4.42230817266854609772076589345, −4.40493373556656307747180293251, −3.68258941768307417564459961712, −3.42106742100160321591840129485, −3.28261446665017997578343359922, −2.86595080290625693495463666517, −2.03308556137160127111835272593, −1.95926020103333398719218504371, −1.73638610231471740308443801922, −1.55127966613772653635832194470, 0, 0, 0, 0,
1.55127966613772653635832194470, 1.73638610231471740308443801922, 1.95926020103333398719218504371, 2.03308556137160127111835272593, 2.86595080290625693495463666517, 3.28261446665017997578343359922, 3.42106742100160321591840129485, 3.68258941768307417564459961712, 4.40493373556656307747180293251, 4.42230817266854609772076589345, 4.52477829635618333634785034522, 4.66932085531096349826805844152, 5.09977681012943747586778877994, 5.37965047500399563365257126725, 5.53510546586307052289615881679, 5.72123882800760642411037093895, 6.00507102378909348348141838790, 6.01685940753180579280486418089, 6.43255493432673088387957864134, 6.47715012416389482423931812368, 6.80090567775694803637690421120, 6.83974332914137070798219456170, 7.13950416034596584885515816296, 7.51688178351082182344109482824, 7.72408930626670411408262597742