L(s) = 1 | − 10·9-s + 40·13-s − 20·17-s − 38·25-s − 160·29-s − 46·49-s + 40·53-s + 160·61-s − 87·81-s + 208·101-s + 40·113-s − 400·117-s − 100·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 200·153-s + 157-s + 163-s + 167-s + 862·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 1.11·9-s + 3.07·13-s − 1.17·17-s − 1.51·25-s − 5.51·29-s − 0.938·49-s + 0.754·53-s + 2.62·61-s − 1.07·81-s + 2.05·101-s + 0.353·113-s − 3.41·117-s − 0.826·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 1.30·153-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 5.10·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
264139. |
Root analytic conductor: |
4.76133 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
2.267547026 |
L(21) |
≈ |
2.267547026 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1−20T+p2T2)2 |
good | 3 | C22 | (1+5T2+p4T4)2 |
| 5 | C22 | (1+19T2+p4T4)2 |
| 7 | C22 | (1+23T2+p4T4)2 |
| 11 | C22 | (1+50T2+p4T4)2 |
| 17 | C2 | (1+5T+p2T2)4 |
| 19 | C22 | (1+710T2+p4T4)2 |
| 23 | C22 | (1−10pT2+p4T4)2 |
| 29 | C2 | (1+40T+p2T2)4 |
| 31 | C22 | (1+1490T2+p4T4)2 |
| 37 | C22 | (1−1013T2+p4T4)2 |
| 41 | C1×C1 | (1−pT)4(1+pT)4 |
| 43 | C22 | (1−1835T2+p4T4)2 |
| 47 | C22 | (1−1657T2+p4T4)2 |
| 53 | C2 | (1−10T+p2T2)4 |
| 59 | C22 | (1+2630T2+p4T4)2 |
| 61 | C2 | (1−40T+p2T2)4 |
| 67 | C22 | (1−1822T2+p4T4)2 |
| 71 | C22 | (1+9215T2+p4T4)2 |
| 73 | C22 | (1−3758T2+p4T4)2 |
| 79 | C22 | (1+8218T2+p4T4)2 |
| 83 | C22 | (1+13478T2+p4T4)2 |
| 89 | C22 | (1−8942T2+p4T4)2 |
| 97 | C22 | (1−8882T2+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.12602520888559376802844701154, −6.88475691733814945617030800399, −6.63623073584368899095370878068, −6.44232578129918051875450237927, −5.95172124297524132111167581998, −5.88645589491455845466279872257, −5.79210771237298611931130248238, −5.74981641944274741796422330244, −5.29858153473202286045862479321, −5.17175397934008883980612242611, −4.82506902574281737094248580334, −4.24554752547903162917047911807, −4.05926862552703457064648489796, −4.00401524844037044231925040550, −3.72709319612568352332784464540, −3.43735675201342973265369876563, −3.32519894900346866695385289130, −2.99075512472621930911330746437, −2.25771636584362839126097995097, −2.23287153949932623455361191369, −1.94118205391733956502527554885, −1.52227262690839896806596496050, −1.33385465951921127242116032953, −0.46199678033481057364057735260, −0.37264892199664266296029216095,
0.37264892199664266296029216095, 0.46199678033481057364057735260, 1.33385465951921127242116032953, 1.52227262690839896806596496050, 1.94118205391733956502527554885, 2.23287153949932623455361191369, 2.25771636584362839126097995097, 2.99075512472621930911330746437, 3.32519894900346866695385289130, 3.43735675201342973265369876563, 3.72709319612568352332784464540, 4.00401524844037044231925040550, 4.05926862552703457064648489796, 4.24554752547903162917047911807, 4.82506902574281737094248580334, 5.17175397934008883980612242611, 5.29858153473202286045862479321, 5.74981641944274741796422330244, 5.79210771237298611931130248238, 5.88645589491455845466279872257, 5.95172124297524132111167581998, 6.44232578129918051875450237927, 6.63623073584368899095370878068, 6.88475691733814945617030800399, 7.12602520888559376802844701154