L(s) = 1 | − 8·5-s − 2·9-s + 84·17-s − 34·25-s + 48·29-s − 8·37-s − 32·41-s + 16·45-s − 34·49-s − 40·53-s − 64·61-s + 208·73-s + 49·81-s − 672·85-s − 352·89-s − 472·97-s + 80·101-s + 56·109-s + 56·113-s + 332·121-s + 528·125-s + 127-s + 131-s + 137-s + 139-s − 384·145-s + 149-s + ⋯ |
L(s) = 1 | − 8/5·5-s − 2/9·9-s + 4.94·17-s − 1.35·25-s + 1.65·29-s − 0.216·37-s − 0.780·41-s + 0.355·45-s − 0.693·49-s − 0.754·53-s − 1.04·61-s + 2.84·73-s + 0.604·81-s − 7.90·85-s − 3.95·89-s − 4.86·97-s + 0.792·101-s + 0.513·109-s + 0.495·113-s + 2.74·121-s + 4.22·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 2.64·145-s + 0.00671·149-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
264139. |
Root analytic conductor: |
4.76133 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
2.790147339 |
L(21) |
≈ |
2.790147339 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1−pT2)2 |
good | 3 | D4×D4 | (1−4T+p2T2−4p2T3+p4T4)(1+4T+p2T2+4p2T3+p4T4) |
| 5 | D4 | (1+4T+41T2+4p2T3+p4T4)2 |
| 7 | C22≀C2 | 1+34T2+4259T4+34p4T6+p8T8 |
| 11 | C22≀C2 | 1−332T2+53510T4−332p4T6+p8T8 |
| 17 | C2 | (1−21T+p2T2)4 |
| 19 | C22≀C2 | 1−364T2+24198T4−364p4T6+p8T8 |
| 23 | C22≀C2 | 1−1268T2+821030T4−1268p4T6+p8T8 |
| 29 | D4 | (1−24T+1358T2−24p2T3+p4T4)2 |
| 31 | C22≀C2 | 1−1412T2+1493510T4−1412p4T6+p8T8 |
| 37 | D4 | (1+4T+1689T2+4p2T3+p4T4)2 |
| 41 | D4 | (1+16T+98T2+16p2T3+p4T4)2 |
| 43 | C22≀C2 | 1−3886T2+7765539T4−3886p4T6+p8T8 |
| 47 | C22≀C2 | 1+274T2+9637523T4+274p4T6+p8T8 |
| 53 | D4 | (1+20T+4418T2+20p2T3+p4T4)2 |
| 59 | C22≀C2 | 1−164pT2+43327878T4−164p5T6+p8T8 |
| 61 | D4 | (1+32T+6866T2+32p2T3+p4T4)2 |
| 67 | C22≀C2 | 1−14572T2+92309766T4−14572p4T6+p8T8 |
| 71 | C22≀C2 | 1−15134T2+106881443T4−15134p4T6+p8T8 |
| 73 | D4 | (1−104T+9150T2−104p2T3+p4T4)2 |
| 79 | C22≀C2 | 1−5684T2+65469158T4−5684p4T6+p8T8 |
| 83 | C22≀C2 | 1−26260T2+267246150T4−26260p4T6+p8T8 |
| 89 | D4 | (1+176T+21038T2+176p2T3+p4T4)2 |
| 97 | D4 | (1+236T+27542T2+236p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.15522794752902748767630561643, −7.14120948891458540015487316174, −6.54965721865656015388793012537, −6.53589119839647468450279366096, −6.17664655738859106786292590589, −5.87018462593299127664994200344, −5.69795919049884456658615334713, −5.49183175496949652932823065498, −5.31280678028012520490396732834, −5.04093999951866267038717424175, −4.80254673224194781424153517583, −4.39941217358321235486249047647, −4.15367380499473365964483031410, −3.80487398866009136006525505782, −3.79321338677471760427486714049, −3.42424844202454944310720482820, −3.14558843641988701394773690327, −2.96746127057233078744886705123, −2.86280551426022797477042193992, −2.21025785428274628577873873401, −1.73785585733562199840986072094, −1.34823875054861798318922661581, −1.24262007365230265857488816521, −0.57234663625823645418018803495, −0.38793990955894626315804131272,
0.38793990955894626315804131272, 0.57234663625823645418018803495, 1.24262007365230265857488816521, 1.34823875054861798318922661581, 1.73785585733562199840986072094, 2.21025785428274628577873873401, 2.86280551426022797477042193992, 2.96746127057233078744886705123, 3.14558843641988701394773690327, 3.42424844202454944310720482820, 3.79321338677471760427486714049, 3.80487398866009136006525505782, 4.15367380499473365964483031410, 4.39941217358321235486249047647, 4.80254673224194781424153517583, 5.04093999951866267038717424175, 5.31280678028012520490396732834, 5.49183175496949652932823065498, 5.69795919049884456658615334713, 5.87018462593299127664994200344, 6.17664655738859106786292590589, 6.53589119839647468450279366096, 6.54965721865656015388793012537, 7.14120948891458540015487316174, 7.15522794752902748767630561643