L(s) = 1 | − 4·4-s + 4·13-s + 10·16-s − 16·52-s − 20·64-s − 4·67-s − 81-s − 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 40·208-s + 211-s + ⋯ |
L(s) = 1 | − 4·4-s + 4·13-s + 10·16-s − 16·52-s − 20·64-s − 4·67-s − 81-s − 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 40·208-s + 211-s + ⋯ |
Λ(s)=(=((34⋅178)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((34⋅178)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅178
|
Sign: |
1
|
Analytic conductor: |
0.0350513 |
Root analytic conductor: |
0.657791 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅178, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.3451890348 |
L(21) |
≈ |
0.3451890348 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.82956995653123268778773059071, −7.44260067109104452478358349948, −6.93877467487005068763566155171, −6.90733675735922229648144695972, −6.55463420897253909556409351222, −5.93226144079959852517820556361, −5.92577237915978534975049110222, −5.91396263915775707123898883969, −5.81377201354538384911422407052, −5.46220063401616106482853365663, −4.96110723840541831610336365924, −4.92373286025177504971815052936, −4.74143429003153392351442594367, −4.24280479494134072127724901382, −4.12965944799308626802165964252, −3.98667549045219346519891785970, −3.87004982682175354458229525103, −3.50458912913076591424491464664, −3.20605174806432004589495505949, −3.06410198624547711167492618776, −2.73495878606900186375558057308, −1.64694741879472401837446572265, −1.36230105764151789874643651832, −1.35190921737122512040792026496, −0.69164488747293383763982657862,
0.69164488747293383763982657862, 1.35190921737122512040792026496, 1.36230105764151789874643651832, 1.64694741879472401837446572265, 2.73495878606900186375558057308, 3.06410198624547711167492618776, 3.20605174806432004589495505949, 3.50458912913076591424491464664, 3.87004982682175354458229525103, 3.98667549045219346519891785970, 4.12965944799308626802165964252, 4.24280479494134072127724901382, 4.74143429003153392351442594367, 4.92373286025177504971815052936, 4.96110723840541831610336365924, 5.46220063401616106482853365663, 5.81377201354538384911422407052, 5.91396263915775707123898883969, 5.92577237915978534975049110222, 5.93226144079959852517820556361, 6.55463420897253909556409351222, 6.90733675735922229648144695972, 6.93877467487005068763566155171, 7.44260067109104452478358349948, 7.82956995653123268778773059071