Properties

Label 8-867e4-1.1-c0e4-0-0
Degree $8$
Conductor $565036352721$
Sign $1$
Analytic cond. $0.0350513$
Root an. cond. $0.657791$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 4·13-s + 10·16-s − 16·52-s − 20·64-s − 4·67-s − 81-s − 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 40·208-s + 211-s + ⋯
L(s)  = 1  − 4·4-s + 4·13-s + 10·16-s − 16·52-s − 20·64-s − 4·67-s − 81-s − 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 40·208-s + 211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(0.0350513\)
Root analytic conductor: \(0.657791\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 17^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3451890348\)
\(L(\frac12)\) \(\approx\) \(0.3451890348\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + T^{4} \)
17 \( 1 \)
good2$C_2$ \( ( 1 + T^{2} )^{4} \)
5$C_2^2$ \( ( 1 + T^{4} )^{2} \)
7$C_2^3$ \( 1 - T^{4} + T^{8} \)
11$C_2^2$ \( ( 1 + T^{4} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
31$C_2^3$ \( 1 - T^{4} + T^{8} \)
37$C_2^3$ \( 1 - T^{4} + T^{8} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_2^3$ \( 1 - T^{4} + T^{8} \)
67$C_2$ \( ( 1 + T + T^{2} )^{4} \)
71$C_2^2$ \( ( 1 + T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + T^{4} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2^3$ \( 1 - T^{4} + T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82956995653123268778773059071, −7.44260067109104452478358349948, −6.93877467487005068763566155171, −6.90733675735922229648144695972, −6.55463420897253909556409351222, −5.93226144079959852517820556361, −5.92577237915978534975049110222, −5.91396263915775707123898883969, −5.81377201354538384911422407052, −5.46220063401616106482853365663, −4.96110723840541831610336365924, −4.92373286025177504971815052936, −4.74143429003153392351442594367, −4.24280479494134072127724901382, −4.12965944799308626802165964252, −3.98667549045219346519891785970, −3.87004982682175354458229525103, −3.50458912913076591424491464664, −3.20605174806432004589495505949, −3.06410198624547711167492618776, −2.73495878606900186375558057308, −1.64694741879472401837446572265, −1.36230105764151789874643651832, −1.35190921737122512040792026496, −0.69164488747293383763982657862, 0.69164488747293383763982657862, 1.35190921737122512040792026496, 1.36230105764151789874643651832, 1.64694741879472401837446572265, 2.73495878606900186375558057308, 3.06410198624547711167492618776, 3.20605174806432004589495505949, 3.50458912913076591424491464664, 3.87004982682175354458229525103, 3.98667549045219346519891785970, 4.12965944799308626802165964252, 4.24280479494134072127724901382, 4.74143429003153392351442594367, 4.92373286025177504971815052936, 4.96110723840541831610336365924, 5.46220063401616106482853365663, 5.81377201354538384911422407052, 5.91396263915775707123898883969, 5.92577237915978534975049110222, 5.93226144079959852517820556361, 6.55463420897253909556409351222, 6.90733675735922229648144695972, 6.93877467487005068763566155171, 7.44260067109104452478358349948, 7.82956995653123268778773059071

Graph of the $Z$-function along the critical line