L(s) = 1 | + 4·19-s − 24·29-s − 4·31-s + 24·41-s + 20·49-s − 24·59-s − 16·61-s + 24·71-s + 16·79-s + 24·101-s + 4·109-s − 38·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 20·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 0.917·19-s − 4.45·29-s − 0.718·31-s + 3.74·41-s + 20/7·49-s − 3.12·59-s − 2.04·61-s + 2.84·71-s + 1.80·79-s + 2.38·101-s + 0.383·109-s − 3.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.53·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=((28⋅316⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅316⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅316⋅58
|
Sign: |
1
|
Analytic conductor: |
1.75004×107 |
Root analytic conductor: |
8.04231 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅316⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.457607946 |
L(21) |
≈ |
1.457607946 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4×C2 | 1−20T2+186T4−20p2T6+p4T8 |
| 11 | C22 | (1+19T2+p2T4)2 |
| 13 | D4×C2 | 1−20T2+246T4−20p2T6+p4T8 |
| 17 | D4×C2 | 1−44T2+954T4−44p2T6+p4T8 |
| 19 | D4 | (1−2T+27T2−2pT3+p2T4)2 |
| 23 | C22 | (1−34T2+p2T4)2 |
| 29 | D4 | (1+12T+91T2+12pT3+p2T4)2 |
| 31 | D4 | (1+2T+15T2+2pT3+p2T4)2 |
| 37 | D4×C2 | 1−92T2+4746T4−92p2T6+p4T8 |
| 41 | D4 | (1−12T+91T2−12pT3+p2T4)2 |
| 43 | D4×C2 | 1−116T2+6762T4−116p2T6+p4T8 |
| 47 | D4×C2 | 1−164T2+11034T4−164p2T6+p4T8 |
| 53 | D4×C2 | 1−44T2+5130T4−44p2T6+p4T8 |
| 59 | D4 | (1+12T+151T2+12pT3+p2T4)2 |
| 61 | C2 | (1+4T+pT2)4 |
| 67 | D4×C2 | 1−20T2+2166T4−20p2T6+p4T8 |
| 71 | D4 | (1−12T+151T2−12pT3+p2T4)2 |
| 73 | D4×C2 | 1−188T2+16794T4−188p2T6+p4T8 |
| 79 | D4 | (1−8T+66T2−8pT3+p2T4)2 |
| 83 | D4×C2 | 1−20T2+8586T4−20p2T6+p4T8 |
| 89 | C22 | (1+151T2+p2T4)2 |
| 97 | D4×C2 | 1−380T2+54906T4−380p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.57102585267548162113678575558, −5.43373247788282536580030267928, −5.14229331087035426504742197099, −4.83742244922653844135233795420, −4.76016505369932647820947080055, −4.72223964476221415109475682988, −4.38056870104588391142390359373, −4.00897604053955738836722710170, −3.85160082984493484948385184900, −3.83965080749752124721595933566, −3.75579654970022471664609909864, −3.41975297551013825950267292812, −3.34179194150733243741301246630, −2.99951132303552983284904893186, −2.71610249868806172257141623291, −2.43565002958516511346958203896, −2.28987874419423450495269966416, −2.25194070438566794164048200024, −2.02333429146801692597178282020, −1.59060936046664083177389947721, −1.29255634186707623467288052427, −1.09441886584919454489348562437, −1.08561613217301888949976881122, −0.39250421923980820701298727275, −0.19290917447958255108560666359,
0.19290917447958255108560666359, 0.39250421923980820701298727275, 1.08561613217301888949976881122, 1.09441886584919454489348562437, 1.29255634186707623467288052427, 1.59060936046664083177389947721, 2.02333429146801692597178282020, 2.25194070438566794164048200024, 2.28987874419423450495269966416, 2.43565002958516511346958203896, 2.71610249868806172257141623291, 2.99951132303552983284904893186, 3.34179194150733243741301246630, 3.41975297551013825950267292812, 3.75579654970022471664609909864, 3.83965080749752124721595933566, 3.85160082984493484948385184900, 4.00897604053955738836722710170, 4.38056870104588391142390359373, 4.72223964476221415109475682988, 4.76016505369932647820947080055, 4.83742244922653844135233795420, 5.14229331087035426504742197099, 5.43373247788282536580030267928, 5.57102585267548162113678575558