L(s) = 1 | + 4·3-s + 8·9-s + 8·13-s − 24·23-s − 2·25-s + 12·27-s + 24·37-s + 32·39-s + 8·47-s + 16·49-s − 16·59-s − 96·69-s − 16·71-s + 40·73-s − 8·75-s + 23·81-s − 8·83-s + 8·97-s − 56·107-s − 48·109-s + 96·111-s + 64·117-s − 28·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 8/3·9-s + 2.21·13-s − 5.00·23-s − 2/5·25-s + 2.30·27-s + 3.94·37-s + 5.12·39-s + 1.16·47-s + 16/7·49-s − 2.08·59-s − 11.5·69-s − 1.89·71-s + 4.68·73-s − 0.923·75-s + 23/9·81-s − 0.878·83-s + 0.812·97-s − 5.41·107-s − 4.59·109-s + 9.11·111-s + 5.91·117-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
3452.97 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.836104950 |
L(21) |
≈ |
6.836104950 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 5 | C2 | (1+T2)2 |
good | 7 | D4×C2 | 1−16T2+130T4−16p2T6+p4T8 |
| 11 | C22 | (1+14T2+p2T4)2 |
| 13 | C2 | (1−2T+pT2)4 |
| 17 | C4×C2 | 1+4T2+70T4+4p2T6+p4T8 |
| 19 | C22 | (1−30T2+p2T4)2 |
| 23 | D4 | (1+12T+80T2+12pT3+p2T4)2 |
| 29 | C22 | (1+6T2+p2T4)2 |
| 31 | C22 | (1−30T2+p2T4)2 |
| 37 | D4 | (1−12T+78T2−12pT3+p2T4)2 |
| 41 | C22 | (1−78T2+p2T4)2 |
| 43 | D4×C2 | 1+32T2+2386T4+32p2T6+p4T8 |
| 47 | D4 | (1−4T+80T2−4pT3+p2T4)2 |
| 53 | D4×C2 | 1−140T2+10006T4−140p2T6+p4T8 |
| 59 | D4 | (1+8T+102T2+8pT3+p2T4)2 |
| 61 | C22 | (1+90T2+p2T4)2 |
| 67 | D4×C2 | 1−96T2+4082T4−96p2T6+p4T8 |
| 71 | D4 | (1+8T+150T2+8pT3+p2T4)2 |
| 73 | C4 | (1−20T+214T2−20pT3+p2T4)2 |
| 79 | D4×C2 | 1−140T2+12774T4−140p2T6+p4T8 |
| 83 | D4 | (1+4T+120T2+4pT3+p2T4)2 |
| 89 | D4×C2 | 1−68T2+8806T4−68p2T6+p4T8 |
| 97 | C4 | (1−4T−90T2−4pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.67791625374048439321451067749, −6.73000673676486891701030068145, −6.70358510862911210088224607376, −6.68616512729359268528128417691, −6.26216519437737281059893779057, −6.00001014784392624777439472446, −5.97051709847828387592251343797, −5.71450596088105319919339095239, −5.33476764644705104083583278791, −5.30510685353685002044739947340, −4.49469931838036930045635179805, −4.38368658183573462338288319609, −4.27088844762796763341626304012, −3.90962579124419425007846334516, −3.74522112318939901511423993579, −3.66182829044067056772071800503, −3.59988102841603146407170485291, −2.66388554224525805395656689073, −2.60689882874429319990856351568, −2.51780175269678124865062626304, −2.45284117061914577248896877768, −1.73612211265992309580400064701, −1.43274033432367894065856734640, −1.28921250116194665075053671117, −0.47026160017617460907234407445,
0.47026160017617460907234407445, 1.28921250116194665075053671117, 1.43274033432367894065856734640, 1.73612211265992309580400064701, 2.45284117061914577248896877768, 2.51780175269678124865062626304, 2.60689882874429319990856351568, 2.66388554224525805395656689073, 3.59988102841603146407170485291, 3.66182829044067056772071800503, 3.74522112318939901511423993579, 3.90962579124419425007846334516, 4.27088844762796763341626304012, 4.38368658183573462338288319609, 4.49469931838036930045635179805, 5.30510685353685002044739947340, 5.33476764644705104083583278791, 5.71450596088105319919339095239, 5.97051709847828387592251343797, 6.00001014784392624777439472446, 6.26216519437737281059893779057, 6.68616512729359268528128417691, 6.70358510862911210088224607376, 6.73000673676486891701030068145, 7.67791625374048439321451067749