L(s) = 1 | − 4·3-s + 8·9-s + 8·13-s + 24·23-s − 2·25-s − 12·27-s + 24·37-s − 32·39-s − 8·47-s + 16·49-s + 16·59-s − 96·69-s + 16·71-s + 40·73-s + 8·75-s + 23·81-s + 8·83-s + 8·97-s + 56·107-s − 48·109-s − 96·111-s + 64·117-s − 28·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 8/3·9-s + 2.21·13-s + 5.00·23-s − 2/5·25-s − 2.30·27-s + 3.94·37-s − 5.12·39-s − 1.16·47-s + 16/7·49-s + 2.08·59-s − 11.5·69-s + 1.89·71-s + 4.68·73-s + 0.923·75-s + 23/9·81-s + 0.878·83-s + 0.812·97-s + 5.41·107-s − 4.59·109-s − 9.11·111-s + 5.91·117-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
3452.97 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.648065654 |
L(21) |
≈ |
2.648065654 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 5 | C2 | (1+T2)2 |
good | 7 | D4×C2 | 1−16T2+130T4−16p2T6+p4T8 |
| 11 | C22 | (1+14T2+p2T4)2 |
| 13 | C2 | (1−2T+pT2)4 |
| 17 | C4×C2 | 1+4T2+70T4+4p2T6+p4T8 |
| 19 | C22 | (1−30T2+p2T4)2 |
| 23 | D4 | (1−12T+80T2−12pT3+p2T4)2 |
| 29 | C22 | (1+6T2+p2T4)2 |
| 31 | C22 | (1−30T2+p2T4)2 |
| 37 | D4 | (1−12T+78T2−12pT3+p2T4)2 |
| 41 | C22 | (1−78T2+p2T4)2 |
| 43 | D4×C2 | 1+32T2+2386T4+32p2T6+p4T8 |
| 47 | D4 | (1+4T+80T2+4pT3+p2T4)2 |
| 53 | D4×C2 | 1−140T2+10006T4−140p2T6+p4T8 |
| 59 | D4 | (1−8T+102T2−8pT3+p2T4)2 |
| 61 | C22 | (1+90T2+p2T4)2 |
| 67 | D4×C2 | 1−96T2+4082T4−96p2T6+p4T8 |
| 71 | D4 | (1−8T+150T2−8pT3+p2T4)2 |
| 73 | C4 | (1−20T+214T2−20pT3+p2T4)2 |
| 79 | D4×C2 | 1−140T2+12774T4−140p2T6+p4T8 |
| 83 | D4 | (1−4T+120T2−4pT3+p2T4)2 |
| 89 | D4×C2 | 1−68T2+8806T4−68p2T6+p4T8 |
| 97 | C4 | (1−4T−90T2−4pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.07988302790223246056144120900, −6.89046630475133300534130116360, −6.63345930217755040312533339311, −6.51500579500628582876908205470, −6.23699734120006272994674980479, −6.03161736404331790213670155030, −5.85668004846700883932640289113, −5.54592286500107858042304277805, −5.51542667989407203918561645001, −5.01807871026151360302052969832, −4.85407820266115550208654748056, −4.81733059445413063157327450310, −4.73212765218850501635646726406, −3.94635010344571889670603757365, −3.85808596794281587373871446819, −3.83298226078509975248661279788, −3.32478347861792444160339932040, −3.15925824482276037665398143692, −2.64195822731942701521079276501, −2.31458868077247472819404367954, −2.19142868616185161522048972611, −1.32982430455142092471575026147, −0.889344124165243472400658211134, −0.865214052208346090838523450650, −0.822628267049516820040653816920,
0.822628267049516820040653816920, 0.865214052208346090838523450650, 0.889344124165243472400658211134, 1.32982430455142092471575026147, 2.19142868616185161522048972611, 2.31458868077247472819404367954, 2.64195822731942701521079276501, 3.15925824482276037665398143692, 3.32478347861792444160339932040, 3.83298226078509975248661279788, 3.85808596794281587373871446819, 3.94635010344571889670603757365, 4.73212765218850501635646726406, 4.81733059445413063157327450310, 4.85407820266115550208654748056, 5.01807871026151360302052969832, 5.51542667989407203918561645001, 5.54592286500107858042304277805, 5.85668004846700883932640289113, 6.03161736404331790213670155030, 6.23699734120006272994674980479, 6.51500579500628582876908205470, 6.63345930217755040312533339311, 6.89046630475133300534130116360, 7.07988302790223246056144120900