L(s) = 1 | + 2·2-s + 2·4-s + 2·7-s − 4·8-s + 9-s − 12·11-s − 14·13-s + 4·14-s − 12·16-s − 6·17-s + 2·18-s + 12·19-s − 24·22-s + 12·23-s − 28·26-s + 4·28-s − 2·29-s − 16·32-s − 12·34-s + 2·36-s + 8·37-s + 24·38-s − 6·41-s − 6·43-s − 24·44-s + 24·46-s − 20·47-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 0.755·7-s − 1.41·8-s + 1/3·9-s − 3.61·11-s − 3.88·13-s + 1.06·14-s − 3·16-s − 1.45·17-s + 0.471·18-s + 2.75·19-s − 5.11·22-s + 2.50·23-s − 5.49·26-s + 0.755·28-s − 0.371·29-s − 2.82·32-s − 2.05·34-s + 1/3·36-s + 1.31·37-s + 3.89·38-s − 0.937·41-s − 0.914·43-s − 3.61·44-s + 3.53·46-s − 2.91·47-s + ⋯ |
Λ(s)=(=((34⋅58⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅134
|
Sign: |
1
|
Analytic conductor: |
3673.89 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.473048844 |
L(21) |
≈ |
1.473048844 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1−T2+T4 |
| 5 | | 1 |
| 13 | C2 | (1+7T+pT2)2 |
good | 2 | C2×C22 | (1−pT+pT2)2(1+pT+pT2+p2T3+p2T4) |
| 7 | D4×C2 | 1−2T+T2+22T3−68T4+22pT5+p2T6−2p3T7+p4T8 |
| 11 | C22 | (1+6T+23T2+6pT3+p2T4)2 |
| 17 | D4×C2 | 1+6T+24T2+72T3+59T4+72pT5+24p2T6+6p3T7+p4T8 |
| 19 | D4×C2 | 1−12T+94T2−552T3+2667T4−552pT5+94p2T6−12p3T7+p4T8 |
| 23 | D4×C2 | 1−12T+90T2−504T3+2339T4−504pT5+90p2T6−12p3T7+p4T8 |
| 29 | D4×C2 | 1+2T−52T2−4T3+2179T4−4pT5−52p2T6+2p3T7+p4T8 |
| 31 | D4×C2 | 1−2pT2+2451T4−2p3T6+p4T8 |
| 37 | C22 | (1−4T−21T2−4pT3+p2T4)2 |
| 41 | D4×C2 | 1+6T+48T2+216T3+107T4+216pT5+48p2T6+6p3T7+p4T8 |
| 43 | D4×C2 | 1+6T+97T2+510T3+5892T4+510pT5+97p2T6+6p3T7+p4T8 |
| 47 | D4 | (1+10T+92T2+10pT3+p2T4)2 |
| 53 | C22 | (1−58T2+p2T4)2 |
| 59 | D4×C2 | 1−6T+52T2−240T3−1173T4−240pT5+52p2T6−6p3T7+p4T8 |
| 61 | D4×C2 | 1+2T−107T2−22T3+8356T4−22pT5−107p2T6+2p3T7+p4T8 |
| 67 | D4×C2 | 1+18T+121T2+1242T3+15012T4+1242pT5+121p2T6+18p3T7+p4T8 |
| 71 | D4×C2 | 1+6T+36T2+144T3−3613T4+144pT5+36p2T6+6p3T7+p4T8 |
| 73 | D4 | (1+10T+63T2+10pT3+p2T4)2 |
| 79 | D4 | (1−10T+135T2−10pT3+p2T4)2 |
| 83 | D4 | (1−12T+190T2−12pT3+p2T4)2 |
| 89 | D4×C2 | 1+6T+184T2+1032T3+22731T4+1032pT5+184p2T6+6p3T7+p4T8 |
| 97 | D4×C2 | 1−26T+325T2−4082T3+48220T4−4082pT5+325p2T6−26p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.22577491817874276141009544835, −7.02172669617890531789811456920, −6.81778308920199025808024835077, −6.38492724332742250949716171348, −6.14310973732141578409462640590, −6.05727543774034306811299306411, −5.48822805131380004413032203107, −5.38576324195486280145212708975, −5.23084654268449229108372876199, −4.96778285728543956968355378161, −4.90721015185146233320028994043, −4.87711295760923943476710875680, −4.53785950985929038582079028864, −4.49240510380355209543938562531, −3.71811270813407830479229224868, −3.37776824214811318130499538891, −3.14936067752494433759763420025, −2.92109712901595911801998121848, −2.82968354386930019317707583891, −2.69303738149419749946921510041, −2.17225448219348128793023997758, −2.11469934058114748316153610013, −1.65485661416794654420197058996, −0.59413683218181612085849560278, −0.31248525208518421653984280236,
0.31248525208518421653984280236, 0.59413683218181612085849560278, 1.65485661416794654420197058996, 2.11469934058114748316153610013, 2.17225448219348128793023997758, 2.69303738149419749946921510041, 2.82968354386930019317707583891, 2.92109712901595911801998121848, 3.14936067752494433759763420025, 3.37776824214811318130499538891, 3.71811270813407830479229224868, 4.49240510380355209543938562531, 4.53785950985929038582079028864, 4.87711295760923943476710875680, 4.90721015185146233320028994043, 4.96778285728543956968355378161, 5.23084654268449229108372876199, 5.38576324195486280145212708975, 5.48822805131380004413032203107, 6.05727543774034306811299306411, 6.14310973732141578409462640590, 6.38492724332742250949716171348, 6.81778308920199025808024835077, 7.02172669617890531789811456920, 7.22577491817874276141009544835