Properties

Label 2-1638-1.1-c1-0-26
Degree 22
Conductor 16381638
Sign 1-1
Analytic cond. 13.079413.0794
Root an. cond. 3.616553.61655
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s + 7-s + 8-s − 3·10-s − 3·11-s + 13-s + 14-s + 16-s + 3·17-s − 7·19-s − 3·20-s − 3·22-s − 9·23-s + 4·25-s + 26-s + 28-s + 9·29-s − 4·31-s + 32-s + 3·34-s − 3·35-s − 7·37-s − 7·38-s − 3·40-s − 12·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.377·7-s + 0.353·8-s − 0.948·10-s − 0.904·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s − 1.60·19-s − 0.670·20-s − 0.639·22-s − 1.87·23-s + 4/5·25-s + 0.196·26-s + 0.188·28-s + 1.67·29-s − 0.718·31-s + 0.176·32-s + 0.514·34-s − 0.507·35-s − 1.15·37-s − 1.13·38-s − 0.474·40-s − 1.87·41-s + ⋯

Functional equation

Λ(s)=(1638s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(1638s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16381638    =    2327132 \cdot 3^{2} \cdot 7 \cdot 13
Sign: 1-1
Analytic conductor: 13.079413.0794
Root analytic conductor: 3.616553.61655
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 1638, ( :1/2), 1)(2,\ 1638,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1T 1 - T
3 1 1
7 1T 1 - T
13 1T 1 - T
good5 1+3T+pT2 1 + 3 T + p T^{2}
11 1+3T+pT2 1 + 3 T + p T^{2}
17 13T+pT2 1 - 3 T + p T^{2}
19 1+7T+pT2 1 + 7 T + p T^{2}
23 1+9T+pT2 1 + 9 T + p T^{2}
29 19T+pT2 1 - 9 T + p T^{2}
31 1+4T+pT2 1 + 4 T + p T^{2}
37 1+7T+pT2 1 + 7 T + p T^{2}
41 1+12T+pT2 1 + 12 T + p T^{2}
43 1+T+pT2 1 + T + p T^{2}
47 1+pT2 1 + p T^{2}
53 16T+pT2 1 - 6 T + p T^{2}
59 1+12T+pT2 1 + 12 T + p T^{2}
61 1+T+pT2 1 + T + p T^{2}
67 114T+pT2 1 - 14 T + p T^{2}
71 1+12T+pT2 1 + 12 T + p T^{2}
73 1+7T+pT2 1 + 7 T + p T^{2}
79 1+10T+pT2 1 + 10 T + p T^{2}
83 16T+pT2 1 - 6 T + p T^{2}
89 16T+pT2 1 - 6 T + p T^{2}
97 1+10T+pT2 1 + 10 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.494657990807389898658506219562, −8.231691217522472057103385997568, −7.42970330921915709586726435368, −6.54796581741576703271548356667, −5.59399109559353101448430855804, −4.65012025043354629223454819364, −3.98883124750352014007177515851, −3.13495261897234347757421228131, −1.89338424078267539825922227519, 0, 1.89338424078267539825922227519, 3.13495261897234347757421228131, 3.98883124750352014007177515851, 4.65012025043354629223454819364, 5.59399109559353101448430855804, 6.54796581741576703271548356667, 7.42970330921915709586726435368, 8.231691217522472057103385997568, 8.494657990807389898658506219562

Graph of the ZZ-function along the critical line