L(s) = 1 | + 2-s + 4-s − 3·5-s + 7-s + 8-s − 3·10-s − 3·11-s + 13-s + 14-s + 16-s + 3·17-s − 7·19-s − 3·20-s − 3·22-s − 9·23-s + 4·25-s + 26-s + 28-s + 9·29-s − 4·31-s + 32-s + 3·34-s − 3·35-s − 7·37-s − 7·38-s − 3·40-s − 12·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.377·7-s + 0.353·8-s − 0.948·10-s − 0.904·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s − 1.60·19-s − 0.670·20-s − 0.639·22-s − 1.87·23-s + 4/5·25-s + 0.196·26-s + 0.188·28-s + 1.67·29-s − 0.718·31-s + 0.176·32-s + 0.514·34-s − 0.507·35-s − 1.15·37-s − 1.13·38-s − 0.474·40-s − 1.87·41-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1−T |
good | 5 | 1+3T+pT2 |
| 11 | 1+3T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+7T+pT2 |
| 23 | 1+9T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1+12T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+T+pT2 |
| 67 | 1−14T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1+7T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.494657990807389898658506219562, −8.231691217522472057103385997568, −7.42970330921915709586726435368, −6.54796581741576703271548356667, −5.59399109559353101448430855804, −4.65012025043354629223454819364, −3.98883124750352014007177515851, −3.13495261897234347757421228131, −1.89338424078267539825922227519, 0,
1.89338424078267539825922227519, 3.13495261897234347757421228131, 3.98883124750352014007177515851, 4.65012025043354629223454819364, 5.59399109559353101448430855804, 6.54796581741576703271548356667, 7.42970330921915709586726435368, 8.231691217522472057103385997568, 8.494657990807389898658506219562