L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 4·11-s − 12-s − 2·13-s + 16-s − 17-s − 18-s − 4·19-s − 4·22-s − 4·23-s + 24-s + 2·26-s − 27-s + 2·29-s − 4·31-s − 32-s − 4·33-s + 34-s + 36-s + 6·37-s + 4·38-s + 2·39-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s − 0.554·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.917·19-s − 0.852·22-s − 0.834·23-s + 0.204·24-s + 0.392·26-s − 0.192·27-s + 0.371·29-s − 0.718·31-s − 0.176·32-s − 0.696·33-s + 0.171·34-s + 1/6·36-s + 0.986·37-s + 0.648·38-s + 0.320·39-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
| 17 | 1+T |
good | 7 | 1+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.508076357926522304587707936931, −7.85391852680015313417178593889, −6.81293701478766628611331020079, −6.47749789975439920149959740273, −5.55607683757389846715119248044, −4.51444126045046681585118943777, −3.71442293834107121729389823605, −2.36951231460413935519804036920, −1.37551986425423722963512172703, 0,
1.37551986425423722963512172703, 2.36951231460413935519804036920, 3.71442293834107121729389823605, 4.51444126045046681585118943777, 5.55607683757389846715119248044, 6.47749789975439920149959740273, 6.81293701478766628611331020079, 7.85391852680015313417178593889, 8.508076357926522304587707936931