Properties

Label 2-3234-1.1-c1-0-24
Degree $2$
Conductor $3234$
Sign $1$
Analytic cond. $25.8236$
Root an. cond. $5.08169$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 2·5-s − 6-s − 8-s + 9-s − 2·10-s + 11-s + 12-s − 2·13-s + 2·15-s + 16-s + 6·17-s − 18-s + 4·19-s + 2·20-s − 22-s − 4·23-s − 24-s − 25-s + 2·26-s + 27-s + 2·29-s − 2·30-s + 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.301·11-s + 0.288·12-s − 0.554·13-s + 0.516·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.917·19-s + 0.447·20-s − 0.213·22-s − 0.834·23-s − 0.204·24-s − 1/5·25-s + 0.392·26-s + 0.192·27-s + 0.371·29-s − 0.365·30-s + 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3234\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(25.8236\)
Root analytic conductor: \(5.08169\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3234,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.154636001\)
\(L(\frac12)\) \(\approx\) \(2.154636001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.736150936012440857648978735320, −7.84439006039971069748622971041, −7.49024027339887201227457052610, −6.43679449975526542026435018487, −5.79323544635467042022952173625, −4.93054069578340184917711747999, −3.71446826599373971796272627437, −2.83711647406054313257956134718, −1.96943863395594925899870544120, −1.00454239585262764496288710387, 1.00454239585262764496288710387, 1.96943863395594925899870544120, 2.83711647406054313257956134718, 3.71446826599373971796272627437, 4.93054069578340184917711747999, 5.79323544635467042022952173625, 6.43679449975526542026435018487, 7.49024027339887201227457052610, 7.84439006039971069748622971041, 8.736150936012440857648978735320

Graph of the $Z$-function along the critical line