L(s) = 1 | − 2-s + 3-s + 4-s + 2·5-s − 6-s − 8-s + 9-s − 2·10-s + 11-s + 12-s − 2·13-s + 2·15-s + 16-s + 6·17-s − 18-s + 4·19-s + 2·20-s − 22-s − 4·23-s − 24-s − 25-s + 2·26-s + 27-s + 2·29-s − 2·30-s + 4·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.301·11-s + 0.288·12-s − 0.554·13-s + 0.516·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.917·19-s + 0.447·20-s − 0.213·22-s − 0.834·23-s − 0.204·24-s − 1/5·25-s + 0.392·26-s + 0.192·27-s + 0.371·29-s − 0.365·30-s + 0.718·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(3234s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3234s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.154636001 |
L(21) |
≈ |
2.154636001 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1−2T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1+14T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.736150936012440857648978735320, −7.84439006039971069748622971041, −7.49024027339887201227457052610, −6.43679449975526542026435018487, −5.79323544635467042022952173625, −4.93054069578340184917711747999, −3.71446826599373971796272627437, −2.83711647406054313257956134718, −1.96943863395594925899870544120, −1.00454239585262764496288710387,
1.00454239585262764496288710387, 1.96943863395594925899870544120, 2.83711647406054313257956134718, 3.71446826599373971796272627437, 4.93054069578340184917711747999, 5.79323544635467042022952173625, 6.43679449975526542026435018487, 7.49024027339887201227457052610, 7.84439006039971069748622971041, 8.736150936012440857648978735320