Properties

Label 2-3234-1.1-c1-0-31
Degree $2$
Conductor $3234$
Sign $1$
Analytic cond. $25.8236$
Root an. cond. $5.08169$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s − 8-s + 9-s − 3·10-s − 11-s + 12-s + 6·13-s + 3·15-s + 16-s − 5·17-s − 18-s + 6·19-s + 3·20-s + 22-s + 5·23-s − 24-s + 4·25-s − 6·26-s + 27-s − 6·29-s − 3·30-s + 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.301·11-s + 0.288·12-s + 1.66·13-s + 0.774·15-s + 1/4·16-s − 1.21·17-s − 0.235·18-s + 1.37·19-s + 0.670·20-s + 0.213·22-s + 1.04·23-s − 0.204·24-s + 4/5·25-s − 1.17·26-s + 0.192·27-s − 1.11·29-s − 0.547·30-s + 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3234\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(25.8236\)
Root analytic conductor: \(5.08169\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3234,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.419660610\)
\(L(\frac12)\) \(\approx\) \(2.419660610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 5 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.842237582261943412497659784450, −8.102581647527097612509052589247, −7.20820344916316378150903617194, −6.46756871669938820534669985051, −5.81123907221281022677407571078, −4.97628229745406794569182790979, −3.69490446332830124495370704994, −2.82218766450276993295029177486, −1.91855494693826267909351961029, −1.09688652548402126508340746432, 1.09688652548402126508340746432, 1.91855494693826267909351961029, 2.82218766450276993295029177486, 3.69490446332830124495370704994, 4.97628229745406794569182790979, 5.81123907221281022677407571078, 6.46756871669938820534669985051, 7.20820344916316378150903617194, 8.102581647527097612509052589247, 8.842237582261943412497659784450

Graph of the $Z$-function along the critical line