Properties

Label 2-3234-1.1-c1-0-31
Degree 22
Conductor 32343234
Sign 11
Analytic cond. 25.823625.8236
Root an. cond. 5.081695.08169
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s − 8-s + 9-s − 3·10-s − 11-s + 12-s + 6·13-s + 3·15-s + 16-s − 5·17-s − 18-s + 6·19-s + 3·20-s + 22-s + 5·23-s − 24-s + 4·25-s − 6·26-s + 27-s − 6·29-s − 3·30-s + 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.301·11-s + 0.288·12-s + 1.66·13-s + 0.774·15-s + 1/4·16-s − 1.21·17-s − 0.235·18-s + 1.37·19-s + 0.670·20-s + 0.213·22-s + 1.04·23-s − 0.204·24-s + 4/5·25-s − 1.17·26-s + 0.192·27-s − 1.11·29-s − 0.547·30-s + 0.718·31-s − 0.176·32-s + ⋯

Functional equation

Λ(s)=(3234s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(3234s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 32343234    =    2372112 \cdot 3 \cdot 7^{2} \cdot 11
Sign: 11
Analytic conductor: 25.823625.8236
Root analytic conductor: 5.081695.08169
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 3234, ( :1/2), 1)(2,\ 3234,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.4196606102.419660610
L(12)L(\frac12) \approx 2.4196606102.419660610
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+T 1 + T
3 1T 1 - T
7 1 1
11 1+T 1 + T
good5 13T+pT2 1 - 3 T + p T^{2}
13 16T+pT2 1 - 6 T + p T^{2}
17 1+5T+pT2 1 + 5 T + p T^{2}
19 16T+pT2 1 - 6 T + p T^{2}
23 15T+pT2 1 - 5 T + p T^{2}
29 1+6T+pT2 1 + 6 T + p T^{2}
31 14T+pT2 1 - 4 T + p T^{2}
37 1+2T+pT2 1 + 2 T + p T^{2}
41 15T+pT2 1 - 5 T + p T^{2}
43 1+10T+pT2 1 + 10 T + p T^{2}
47 19T+pT2 1 - 9 T + p T^{2}
53 12T+pT2 1 - 2 T + p T^{2}
59 1+12T+pT2 1 + 12 T + p T^{2}
61 1+5T+pT2 1 + 5 T + p T^{2}
67 15T+pT2 1 - 5 T + p T^{2}
71 14T+pT2 1 - 4 T + p T^{2}
73 112T+pT2 1 - 12 T + p T^{2}
79 1+T+pT2 1 + T + p T^{2}
83 1T+pT2 1 - T + p T^{2}
89 16T+pT2 1 - 6 T + p T^{2}
97 19T+pT2 1 - 9 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.842237582261943412497659784450, −8.102581647527097612509052589247, −7.20820344916316378150903617194, −6.46756871669938820534669985051, −5.81123907221281022677407571078, −4.97628229745406794569182790979, −3.69490446332830124495370704994, −2.82218766450276993295029177486, −1.91855494693826267909351961029, −1.09688652548402126508340746432, 1.09688652548402126508340746432, 1.91855494693826267909351961029, 2.82218766450276993295029177486, 3.69490446332830124495370704994, 4.97628229745406794569182790979, 5.81123907221281022677407571078, 6.46756871669938820534669985051, 7.20820344916316378150903617194, 8.102581647527097612509052589247, 8.842237582261943412497659784450

Graph of the ZZ-function along the critical line