L(s) = 1 | − 5·7-s + 7·13-s + 7·19-s − 4·31-s − 37-s − 5·43-s + 18·49-s + 61-s + 5·67-s + 10·73-s + 4·79-s − 35·91-s + 5·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 1.88·7-s + 1.94·13-s + 1.60·19-s − 0.718·31-s − 0.164·37-s − 0.762·43-s + 18/7·49-s + 0.128·61-s + 0.610·67-s + 1.17·73-s + 0.450·79-s − 3.66·91-s + 0.507·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 326700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 326700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 7 | \( 1 + 5 T + p T^{2} \) |
| 13 | \( 1 - 7 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 - 7 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 5 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - T + p T^{2} \) |
| 67 | \( 1 - 5 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 - 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.95412719965603, −12.41050002287465, −11.99770362613099, −11.43094508274840, −11.05916527815333, −10.48599276647634, −10.10276377992143, −9.541542344599910, −9.306395003570393, −8.777362321760363, −8.355876872695148, −7.684691858577129, −7.235941102439814, −6.626867942176225, −6.403849211611591, −5.841298313359651, −5.476974930267060, −4.879993734468873, −3.990029358971533, −3.540142549799227, −3.416949100832096, −2.805126335922175, −2.084579396299092, −1.247185356843009, −0.8043841076366568, 0,
0.8043841076366568, 1.247185356843009, 2.084579396299092, 2.805126335922175, 3.416949100832096, 3.540142549799227, 3.990029358971533, 4.879993734468873, 5.476974930267060, 5.841298313359651, 6.403849211611591, 6.626867942176225, 7.235941102439814, 7.684691858577129, 8.355876872695148, 8.777362321760363, 9.306395003570393, 9.541542344599910, 10.10276377992143, 10.48599276647634, 11.05916527815333, 11.43094508274840, 11.99770362613099, 12.41050002287465, 12.95412719965603