Properties

Label 2-3328-1.1-c1-0-26
Degree $2$
Conductor $3328$
Sign $1$
Analytic cond. $26.5742$
Root an. cond. $5.15501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 3·7-s − 2·9-s − 13-s − 3·15-s − 7·17-s − 4·19-s − 3·21-s + 4·23-s + 4·25-s + 5·27-s + 4·29-s + 8·31-s + 9·35-s + 7·37-s + 39-s − 2·41-s + 43-s − 6·45-s + 7·47-s + 2·49-s + 7·51-s + 4·53-s + 4·57-s + 14·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 1.13·7-s − 2/3·9-s − 0.277·13-s − 0.774·15-s − 1.69·17-s − 0.917·19-s − 0.654·21-s + 0.834·23-s + 4/5·25-s + 0.962·27-s + 0.742·29-s + 1.43·31-s + 1.52·35-s + 1.15·37-s + 0.160·39-s − 0.312·41-s + 0.152·43-s − 0.894·45-s + 1.02·47-s + 2/7·49-s + 0.980·51-s + 0.549·53-s + 0.529·57-s + 1.82·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3328\)    =    \(2^{8} \cdot 13\)
Sign: $1$
Analytic conductor: \(26.5742\)
Root analytic conductor: \(5.15501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.034318665\)
\(L(\frac12)\) \(\approx\) \(2.034318665\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.688346678043004362720817854167, −8.062957801056656785691485232320, −6.80908640293614540118230030906, −6.38162664221238001798721743035, −5.57492782939857476603569048132, −4.90955045474991307923447518838, −4.30323548470378017580550694537, −2.60212188297765768751674728749, −2.16440348263007722426022041215, −0.886249656884875342153582519243, 0.886249656884875342153582519243, 2.16440348263007722426022041215, 2.60212188297765768751674728749, 4.30323548470378017580550694537, 4.90955045474991307923447518838, 5.57492782939857476603569048132, 6.38162664221238001798721743035, 6.80908640293614540118230030906, 8.062957801056656785691485232320, 8.688346678043004362720817854167

Graph of the $Z$-function along the critical line