L(s) = 1 | − 3-s + 5-s + 7-s + 9-s − 4·11-s + 6·13-s − 15-s − 6·17-s − 4·19-s − 21-s + 8·23-s + 25-s − 27-s + 10·29-s − 4·31-s + 4·33-s + 35-s − 6·37-s − 6·39-s + 6·41-s − 4·43-s + 45-s + 12·47-s + 49-s + 6·51-s + 6·53-s − 4·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s + 1.66·13-s − 0.258·15-s − 1.45·17-s − 0.917·19-s − 0.218·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 1.85·29-s − 0.718·31-s + 0.696·33-s + 0.169·35-s − 0.986·37-s − 0.960·39-s + 0.937·41-s − 0.609·43-s + 0.149·45-s + 1.75·47-s + 1/7·49-s + 0.840·51-s + 0.824·53-s − 0.539·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.650413414\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.650413414\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 - T \) |
good | 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 - 10 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 - 12 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 14 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.775773744583434610766855948933, −7.941073451161906338197880506609, −6.90841754140924239030445895887, −6.40133780430773002190907985831, −5.57875129658840377981956418880, −4.87937387254251474549881717143, −4.13266752889221791838789213884, −2.92843238858422264116016051538, −1.98020137300392719506102999394, −0.797116058773991479013715543409,
0.797116058773991479013715543409, 1.98020137300392719506102999394, 2.92843238858422264116016051538, 4.13266752889221791838789213884, 4.87937387254251474549881717143, 5.57875129658840377981956418880, 6.40133780430773002190907985831, 6.90841754140924239030445895887, 7.941073451161906338197880506609, 8.775773744583434610766855948933