L(s) = 1 | + 3-s − 5-s + 2·7-s + 9-s + 2·11-s + 2·13-s − 15-s + 2·21-s + 25-s + 27-s + 6·29-s − 8·31-s + 2·33-s − 2·35-s − 2·37-s + 2·39-s + 10·41-s + 12·43-s − 45-s − 4·47-s − 3·49-s + 2·53-s − 2·55-s + 10·59-s − 8·61-s + 2·63-s − 2·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s − 0.258·15-s + 0.436·21-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.348·33-s − 0.338·35-s − 0.328·37-s + 0.320·39-s + 1.56·41-s + 1.82·43-s − 0.149·45-s − 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.269·55-s + 1.30·59-s − 1.02·61-s + 0.251·63-s − 0.248·65-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3840s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.647032618 |
L(21) |
≈ |
2.647032618 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1+T |
good | 7 | 1−2T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.547810659680337642624255862630, −7.76941571723357021542519786506, −7.22945478481046549211272292133, −6.33214957923142631509775977844, −5.47435936704460129444891179504, −4.47683036487743968640759593051, −3.93888758298540112651115143689, −3.02317097146693530017544332839, −1.97182907119826815287047351781, −0.970159482132133752136391193546,
0.970159482132133752136391193546, 1.97182907119826815287047351781, 3.02317097146693530017544332839, 3.93888758298540112651115143689, 4.47683036487743968640759593051, 5.47435936704460129444891179504, 6.33214957923142631509775977844, 7.22945478481046549211272292133, 7.76941571723357021542519786506, 8.547810659680337642624255862630