Properties

Label 2-3840-1.1-c1-0-22
Degree $2$
Conductor $3840$
Sign $1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2·7-s + 9-s + 2·11-s + 2·13-s − 15-s + 2·21-s + 25-s + 27-s + 6·29-s − 8·31-s + 2·33-s − 2·35-s − 2·37-s + 2·39-s + 10·41-s + 12·43-s − 45-s − 4·47-s − 3·49-s + 2·53-s − 2·55-s + 10·59-s − 8·61-s + 2·63-s − 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s − 0.258·15-s + 0.436·21-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.348·33-s − 0.338·35-s − 0.328·37-s + 0.320·39-s + 1.56·41-s + 1.82·43-s − 0.149·45-s − 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.269·55-s + 1.30·59-s − 1.02·61-s + 0.251·63-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.647032618\)
\(L(\frac12)\) \(\approx\) \(2.647032618\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.547810659680337642624255862630, −7.76941571723357021542519786506, −7.22945478481046549211272292133, −6.33214957923142631509775977844, −5.47435936704460129444891179504, −4.47683036487743968640759593051, −3.93888758298540112651115143689, −3.02317097146693530017544332839, −1.97182907119826815287047351781, −0.970159482132133752136391193546, 0.970159482132133752136391193546, 1.97182907119826815287047351781, 3.02317097146693530017544332839, 3.93888758298540112651115143689, 4.47683036487743968640759593051, 5.47435936704460129444891179504, 6.33214957923142631509775977844, 7.22945478481046549211272292133, 7.76941571723357021542519786506, 8.547810659680337642624255862630

Graph of the $Z$-function along the critical line