L(s) = 1 | + 2·3-s − 2·7-s + 9-s + 11-s − 4·17-s − 4·19-s − 4·21-s + 6·23-s − 4·27-s + 2·29-s − 8·31-s + 2·33-s − 4·37-s − 6·41-s + 6·43-s + 2·47-s − 3·49-s − 8·51-s − 12·53-s − 8·57-s − 4·59-s + 14·61-s − 2·63-s − 10·67-s + 12·69-s − 8·71-s + 4·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.755·7-s + 1/3·9-s + 0.301·11-s − 0.970·17-s − 0.917·19-s − 0.872·21-s + 1.25·23-s − 0.769·27-s + 0.371·29-s − 1.43·31-s + 0.348·33-s − 0.657·37-s − 0.937·41-s + 0.914·43-s + 0.291·47-s − 3/7·49-s − 1.12·51-s − 1.64·53-s − 1.05·57-s − 0.520·59-s + 1.79·61-s − 0.251·63-s − 1.22·67-s + 1.44·69-s − 0.949·71-s + 0.468·73-s + ⋯ |
Λ(s)=(=(4400s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4400s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−T |
good | 3 | 1−2T+pT2 |
| 7 | 1+2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+2T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.191871686050505723023772771752, −7.22844652283952877540616710847, −6.72548837346794712093746847989, −5.91079469741736939188176872846, −4.88770977827577808579170180890, −3.98331514047171746360978742031, −3.28810060334468870197516710928, −2.57127588045710357001575296894, −1.67005665302555494693104159770, 0,
1.67005665302555494693104159770, 2.57127588045710357001575296894, 3.28810060334468870197516710928, 3.98331514047171746360978742031, 4.88770977827577808579170180890, 5.91079469741736939188176872846, 6.72548837346794712093746847989, 7.22844652283952877540616710847, 8.191871686050505723023772771752