Properties

Label 2-4400-1.1-c1-0-82
Degree $2$
Conductor $4400$
Sign $-1$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·7-s + 9-s + 11-s − 4·17-s − 4·19-s − 4·21-s + 6·23-s − 4·27-s + 2·29-s − 8·31-s + 2·33-s − 4·37-s − 6·41-s + 6·43-s + 2·47-s − 3·49-s − 8·51-s − 12·53-s − 8·57-s − 4·59-s + 14·61-s − 2·63-s − 10·67-s + 12·69-s − 8·71-s + 4·73-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.755·7-s + 1/3·9-s + 0.301·11-s − 0.970·17-s − 0.917·19-s − 0.872·21-s + 1.25·23-s − 0.769·27-s + 0.371·29-s − 1.43·31-s + 0.348·33-s − 0.657·37-s − 0.937·41-s + 0.914·43-s + 0.291·47-s − 3/7·49-s − 1.12·51-s − 1.64·53-s − 1.05·57-s − 0.520·59-s + 1.79·61-s − 0.251·63-s − 1.22·67-s + 1.44·69-s − 0.949·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.191871686050505723023772771752, −7.22844652283952877540616710847, −6.72548837346794712093746847989, −5.91079469741736939188176872846, −4.88770977827577808579170180890, −3.98331514047171746360978742031, −3.28810060334468870197516710928, −2.57127588045710357001575296894, −1.67005665302555494693104159770, 0, 1.67005665302555494693104159770, 2.57127588045710357001575296894, 3.28810060334468870197516710928, 3.98331514047171746360978742031, 4.88770977827577808579170180890, 5.91079469741736939188176872846, 6.72548837346794712093746847989, 7.22844652283952877540616710847, 8.191871686050505723023772771752

Graph of the $Z$-function along the critical line