Properties

Label 2-46410-1.1-c1-0-24
Degree $2$
Conductor $46410$
Sign $-1$
Analytic cond. $370.585$
Root an. cond. $19.2506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s − 4·11-s + 12-s + 13-s + 14-s − 15-s + 16-s − 17-s − 18-s + 4·19-s − 20-s − 21-s + 4·22-s − 4·23-s − 24-s + 25-s − 26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s + 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.218·21-s + 0.852·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(370.585\)
Root analytic conductor: \(19.2506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 46410,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.91285347904665, −14.45998480257915, −13.72070815423300, −13.44752748932317, −12.75884930154209, −12.25754549217342, −11.79469021797898, −11.10711179035104, −10.57304065039947, −10.15833998868912, −9.648134599550287, −9.029729845611194, −8.542719204809034, −7.991107726106329, −7.594912729246958, −7.110036124426088, −6.372432889013523, −5.848105522497146, −5.016156536454985, −4.513818365205123, −3.510591870642355, −3.204778139303824, −2.472115930343356, −1.810315467429763, −0.8543415433238767, 0, 0.8543415433238767, 1.810315467429763, 2.472115930343356, 3.204778139303824, 3.510591870642355, 4.513818365205123, 5.016156536454985, 5.848105522497146, 6.372432889013523, 7.110036124426088, 7.594912729246958, 7.991107726106329, 8.542719204809034, 9.029729845611194, 9.648134599550287, 10.15833998868912, 10.57304065039947, 11.10711179035104, 11.79469021797898, 12.25754549217342, 12.75884930154209, 13.44752748932317, 13.72070815423300, 14.45998480257915, 14.91285347904665

Graph of the $Z$-function along the critical line