Properties

Label 2-6498-1.1-c1-0-40
Degree $2$
Conductor $6498$
Sign $1$
Analytic cond. $51.8867$
Root an. cond. $7.20324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 4·11-s − 2·13-s + 16-s + 6·17-s − 2·20-s + 4·22-s + 4·23-s − 25-s − 2·26-s − 2·29-s − 4·31-s + 32-s + 6·34-s − 10·37-s − 2·40-s + 10·41-s + 4·43-s + 4·44-s + 4·46-s + 4·47-s − 7·49-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 1.20·11-s − 0.554·13-s + 1/4·16-s + 1.45·17-s − 0.447·20-s + 0.852·22-s + 0.834·23-s − 1/5·25-s − 0.392·26-s − 0.371·29-s − 0.718·31-s + 0.176·32-s + 1.02·34-s − 1.64·37-s − 0.316·40-s + 1.56·41-s + 0.609·43-s + 0.603·44-s + 0.589·46-s + 0.583·47-s − 49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6498 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6498 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6498\)    =    \(2 \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(51.8867\)
Root analytic conductor: \(7.20324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6498,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.940935976\)
\(L(\frac12)\) \(\approx\) \(2.940935976\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84351324830482614195159853030, −7.19583741265591956235027568701, −6.73529275791267126360213503833, −5.70322294388590675424631045525, −5.20173444424979461085997861151, −4.21125984248492975559254303317, −3.72105155927604818995516413488, −3.06380200487442055779450117560, −1.89717432081133819255264343684, −0.816282240239440914761831766450, 0.816282240239440914761831766450, 1.89717432081133819255264343684, 3.06380200487442055779450117560, 3.72105155927604818995516413488, 4.21125984248492975559254303317, 5.20173444424979461085997861151, 5.70322294388590675424631045525, 6.73529275791267126360213503833, 7.19583741265591956235027568701, 7.84351324830482614195159853030

Graph of the $Z$-function along the critical line