L(s) = 1 | + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 4·11-s − 2·13-s + 16-s + 6·17-s − 2·20-s + 4·22-s + 4·23-s − 25-s − 2·26-s − 2·29-s − 4·31-s + 32-s + 6·34-s − 10·37-s − 2·40-s + 10·41-s + 4·43-s + 4·44-s + 4·46-s + 4·47-s − 7·49-s − 50-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 1.20·11-s − 0.554·13-s + 1/4·16-s + 1.45·17-s − 0.447·20-s + 0.852·22-s + 0.834·23-s − 1/5·25-s − 0.392·26-s − 0.371·29-s − 0.718·31-s + 0.176·32-s + 1.02·34-s − 1.64·37-s − 0.316·40-s + 1.56·41-s + 0.609·43-s + 0.603·44-s + 0.589·46-s + 0.583·47-s − 49-s − 0.141·50-s + ⋯ |
Λ(s)=(=(6498s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6498s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.940935976 |
L(21) |
≈ |
2.940935976 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 19 | 1 |
good | 5 | 1+2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−6T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84351324830482614195159853030, −7.19583741265591956235027568701, −6.73529275791267126360213503833, −5.70322294388590675424631045525, −5.20173444424979461085997861151, −4.21125984248492975559254303317, −3.72105155927604818995516413488, −3.06380200487442055779450117560, −1.89717432081133819255264343684, −0.816282240239440914761831766450,
0.816282240239440914761831766450, 1.89717432081133819255264343684, 3.06380200487442055779450117560, 3.72105155927604818995516413488, 4.21125984248492975559254303317, 5.20173444424979461085997861151, 5.70322294388590675424631045525, 6.73529275791267126360213503833, 7.19583741265591956235027568701, 7.84351324830482614195159853030