Properties

Label 2-6760-1.1-c1-0-131
Degree $2$
Conductor $6760$
Sign $-1$
Analytic cond. $53.9788$
Root an. cond. $7.34703$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s − 2·11-s − 2·15-s + 2·17-s − 2·19-s + 2·23-s + 25-s − 4·27-s − 6·29-s − 2·31-s − 4·33-s + 6·37-s − 2·41-s + 6·43-s − 45-s + 8·47-s − 7·49-s + 4·51-s − 2·53-s + 2·55-s − 4·57-s − 6·59-s − 14·61-s + 4·69-s − 10·71-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s − 0.603·11-s − 0.516·15-s + 0.485·17-s − 0.458·19-s + 0.417·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s − 0.359·31-s − 0.696·33-s + 0.986·37-s − 0.312·41-s + 0.914·43-s − 0.149·45-s + 1.16·47-s − 49-s + 0.560·51-s − 0.274·53-s + 0.269·55-s − 0.529·57-s − 0.781·59-s − 1.79·61-s + 0.481·69-s − 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6760\)    =    \(2^{3} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(53.9788\)
Root analytic conductor: \(7.34703\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65145326531316609749473144008, −7.33387504597643637570519717846, −6.20297819498089116422846262337, −5.52292241535810330877601261053, −4.57569787487438471292926229119, −3.85287056779756280024412088003, −3.08843563443615203217480631996, −2.50392315128847178535779020476, −1.48618888866608499865943758358, 0, 1.48618888866608499865943758358, 2.50392315128847178535779020476, 3.08843563443615203217480631996, 3.85287056779756280024412088003, 4.57569787487438471292926229119, 5.52292241535810330877601261053, 6.20297819498089116422846262337, 7.33387504597643637570519717846, 7.65145326531316609749473144008

Graph of the $Z$-function along the critical line