L(s) = 1 | + 2·3-s − 5-s + 9-s − 2·11-s − 2·15-s + 2·17-s − 2·19-s + 2·23-s + 25-s − 4·27-s − 6·29-s − 2·31-s − 4·33-s + 6·37-s − 2·41-s + 6·43-s − 45-s + 8·47-s − 7·49-s + 4·51-s − 2·53-s + 2·55-s − 4·57-s − 6·59-s − 14·61-s + 4·69-s − 10·71-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.447·5-s + 1/3·9-s − 0.603·11-s − 0.516·15-s + 0.485·17-s − 0.458·19-s + 0.417·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s − 0.359·31-s − 0.696·33-s + 0.986·37-s − 0.312·41-s + 0.914·43-s − 0.149·45-s + 1.16·47-s − 49-s + 0.560·51-s − 0.274·53-s + 0.269·55-s − 0.529·57-s − 0.781·59-s − 1.79·61-s + 0.481·69-s − 1.18·71-s + ⋯ |
Λ(s)=(=(6760s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6760s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 13 | 1 |
good | 3 | 1−2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+10T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.65145326531316609749473144008, −7.33387504597643637570519717846, −6.20297819498089116422846262337, −5.52292241535810330877601261053, −4.57569787487438471292926229119, −3.85287056779756280024412088003, −3.08843563443615203217480631996, −2.50392315128847178535779020476, −1.48618888866608499865943758358, 0,
1.48618888866608499865943758358, 2.50392315128847178535779020476, 3.08843563443615203217480631996, 3.85287056779756280024412088003, 4.57569787487438471292926229119, 5.52292241535810330877601261053, 6.20297819498089116422846262337, 7.33387504597643637570519717846, 7.65145326531316609749473144008