L(s) = 1 | − 5-s − 11-s − 2·13-s + 3·17-s + 5·19-s − 3·23-s − 4·25-s + 6·29-s − 31-s − 5·37-s − 10·41-s + 4·43-s − 47-s + 9·53-s + 55-s − 3·59-s − 3·61-s + 2·65-s − 11·67-s + 16·71-s − 7·73-s + 11·79-s + 4·83-s − 3·85-s − 9·89-s − 5·95-s − 6·97-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.301·11-s − 0.554·13-s + 0.727·17-s + 1.14·19-s − 0.625·23-s − 4/5·25-s + 1.11·29-s − 0.179·31-s − 0.821·37-s − 1.56·41-s + 0.609·43-s − 0.145·47-s + 1.23·53-s + 0.134·55-s − 0.390·59-s − 0.384·61-s + 0.248·65-s − 1.34·67-s + 1.89·71-s − 0.819·73-s + 1.23·79-s + 0.439·83-s − 0.325·85-s − 0.953·89-s − 0.512·95-s − 0.609·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 - 5 T + p T^{2} \) |
| 23 | \( 1 + 3 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + T + p T^{2} \) |
| 37 | \( 1 + 5 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + T + p T^{2} \) |
| 53 | \( 1 - 9 T + p T^{2} \) |
| 59 | \( 1 + 3 T + p T^{2} \) |
| 61 | \( 1 + 3 T + p T^{2} \) |
| 67 | \( 1 + 11 T + p T^{2} \) |
| 71 | \( 1 - 16 T + p T^{2} \) |
| 73 | \( 1 + 7 T + p T^{2} \) |
| 79 | \( 1 - 11 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 9 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.60233734949409851929377742732, −7.06138511558065905890494217723, −6.17021717574611194133699783495, −5.38556163011720755843927207832, −4.83936090459244492005710846141, −3.86731512336675269916935034765, −3.23459614937853016335352974930, −2.33127983977335778372448708652, −1.23355296609535104775111365231, 0,
1.23355296609535104775111365231, 2.33127983977335778372448708652, 3.23459614937853016335352974930, 3.86731512336675269916935034765, 4.83936090459244492005710846141, 5.38556163011720755843927207832, 6.17021717574611194133699783495, 7.06138511558065905890494217723, 7.60233734949409851929377742732