Properties

Label 2-7605-1.1-c1-0-218
Degree $2$
Conductor $7605$
Sign $-1$
Analytic cond. $60.7262$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 5-s + 5·7-s − 2·10-s − 2·11-s − 10·14-s − 4·16-s − 2·17-s + 2·20-s + 4·22-s − 6·23-s + 25-s + 10·28-s + 4·29-s − 7·31-s + 8·32-s + 4·34-s + 5·35-s − 2·37-s − 6·41-s + 43-s − 4·44-s + 12·46-s + 8·47-s + 18·49-s − 2·50-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.447·5-s + 1.88·7-s − 0.632·10-s − 0.603·11-s − 2.67·14-s − 16-s − 0.485·17-s + 0.447·20-s + 0.852·22-s − 1.25·23-s + 1/5·25-s + 1.88·28-s + 0.742·29-s − 1.25·31-s + 1.41·32-s + 0.685·34-s + 0.845·35-s − 0.328·37-s − 0.937·41-s + 0.152·43-s − 0.603·44-s + 1.76·46-s + 1.16·47-s + 18/7·49-s − 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7605\)    =    \(3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(60.7262\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7605,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 - 5 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 15 T + p T^{2} \)
79 \( 1 - 3 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63191830349450506511065357207, −7.32424451922789077347092107222, −6.27120901501207590227932710169, −5.43210262742652919238429528027, −4.76304990812899016071365029911, −4.09272495499005085504981921440, −2.61280199081632125119869153918, −1.86315542563040252055657950846, −1.34475697320078698804067361472, 0, 1.34475697320078698804067361472, 1.86315542563040252055657950846, 2.61280199081632125119869153918, 4.09272495499005085504981921440, 4.76304990812899016071365029911, 5.43210262742652919238429528027, 6.27120901501207590227932710169, 7.32424451922789077347092107222, 7.63191830349450506511065357207

Graph of the $Z$-function along the critical line