L(s) = 1 | − 2·2-s + 2·4-s + 5-s + 5·7-s − 2·10-s − 2·11-s − 10·14-s − 4·16-s − 2·17-s + 2·20-s + 4·22-s − 6·23-s + 25-s + 10·28-s + 4·29-s − 7·31-s + 8·32-s + 4·34-s + 5·35-s − 2·37-s − 6·41-s + 43-s − 4·44-s + 12·46-s + 8·47-s + 18·49-s − 2·50-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s + 0.447·5-s + 1.88·7-s − 0.632·10-s − 0.603·11-s − 2.67·14-s − 16-s − 0.485·17-s + 0.447·20-s + 0.852·22-s − 1.25·23-s + 1/5·25-s + 1.88·28-s + 0.742·29-s − 1.25·31-s + 1.41·32-s + 0.685·34-s + 0.845·35-s − 0.328·37-s − 0.937·41-s + 0.152·43-s − 0.603·44-s + 1.76·46-s + 1.16·47-s + 18/7·49-s − 0.282·50-s + ⋯ |
Λ(s)=(=(7605s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7605s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 13 | 1 |
good | 2 | 1+pT+pT2 |
| 7 | 1−5T+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1+7T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+13T+pT2 |
| 67 | 1+7T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−15T+pT2 |
| 79 | 1−3T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+5T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.63191830349450506511065357207, −7.32424451922789077347092107222, −6.27120901501207590227932710169, −5.43210262742652919238429528027, −4.76304990812899016071365029911, −4.09272495499005085504981921440, −2.61280199081632125119869153918, −1.86315542563040252055657950846, −1.34475697320078698804067361472, 0,
1.34475697320078698804067361472, 1.86315542563040252055657950846, 2.61280199081632125119869153918, 4.09272495499005085504981921440, 4.76304990812899016071365029911, 5.43210262742652919238429528027, 6.27120901501207590227932710169, 7.32424451922789077347092107222, 7.63191830349450506511065357207