Properties

Label 7605.2.a.a
Level $7605$
Weight $2$
Character orbit 7605.a
Self dual yes
Analytic conductor $60.726$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7605,2,Mod(1,7605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 2 q^{4} + q^{5} + 5 q^{7} - 2 q^{10} - 2 q^{11} - 10 q^{14} - 4 q^{16} - 2 q^{17} + 2 q^{20} + 4 q^{22} - 6 q^{23} + q^{25} + 10 q^{28} + 4 q^{29} - 7 q^{31} + 8 q^{32} + 4 q^{34} + 5 q^{35}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 2.00000 1.00000 0 5.00000 0 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7605.2.a.a 1
3.b odd 2 1 2535.2.a.m 1
13.b even 2 1 7605.2.a.s 1
13.c even 3 2 585.2.j.b 2
39.d odd 2 1 2535.2.a.c 1
39.i odd 6 2 195.2.i.a 2
195.x odd 6 2 975.2.i.i 2
195.bl even 12 4 975.2.bb.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.i.a 2 39.i odd 6 2
585.2.j.b 2 13.c even 3 2
975.2.i.i 2 195.x odd 6 2
975.2.bb.f 4 195.bl even 12 4
2535.2.a.c 1 39.d odd 2 1
2535.2.a.m 1 3.b odd 2 1
7605.2.a.a 1 1.a even 1 1 trivial
7605.2.a.s 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7605))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{7} - 5 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 5 \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T - 4 \) Copy content Toggle raw display
$31$ \( T + 7 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 4 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 13 \) Copy content Toggle raw display
$67$ \( T + 7 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T - 15 \) Copy content Toggle raw display
$79$ \( T - 3 \) Copy content Toggle raw display
$83$ \( T + 8 \) Copy content Toggle raw display
$89$ \( T + 14 \) Copy content Toggle raw display
$97$ \( T + 5 \) Copy content Toggle raw display
show more
show less