Properties

Label 2-88e2-1.1-c1-0-200
Degree $2$
Conductor $7744$
Sign $-1$
Analytic cond. $61.8361$
Root an. cond. $7.86359$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 2·9-s + 3·15-s − 9·23-s + 4·25-s − 5·27-s − 5·31-s − 7·37-s − 6·45-s − 12·47-s − 7·49-s − 6·53-s + 15·59-s − 13·67-s − 9·69-s − 3·71-s + 4·75-s + 81-s − 9·89-s − 5·93-s + 17·97-s − 4·103-s − 7·111-s + 21·113-s − 27·115-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 2/3·9-s + 0.774·15-s − 1.87·23-s + 4/5·25-s − 0.962·27-s − 0.898·31-s − 1.15·37-s − 0.894·45-s − 1.75·47-s − 49-s − 0.824·53-s + 1.95·59-s − 1.58·67-s − 1.08·69-s − 0.356·71-s + 0.461·75-s + 1/9·81-s − 0.953·89-s − 0.518·93-s + 1.72·97-s − 0.394·103-s − 0.664·111-s + 1.97·113-s − 2.51·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7744\)    =    \(2^{6} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(61.8361\)
Root analytic conductor: \(7.86359\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 9 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 15 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 - 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62938943795449180375726272083, −6.71384769060720120193882421718, −6.02262961007585355420168414693, −5.59062275426054906685177336722, −4.79326113227920264944219718231, −3.73664680680989614535616825308, −3.04986442603112923409841815740, −2.09284764022340766723466984716, −1.69684964061657252783071771174, 0, 1.69684964061657252783071771174, 2.09284764022340766723466984716, 3.04986442603112923409841815740, 3.73664680680989614535616825308, 4.79326113227920264944219718231, 5.59062275426054906685177336722, 6.02262961007585355420168414693, 6.71384769060720120193882421718, 7.62938943795449180375726272083

Graph of the $Z$-function along the critical line